ADDENDUM

Report Addendum Final: Hydrologic Modeling of the Santa Clara River with U.S. EPA Hydrologic Simulation Program FORTRAN (HSPF) December, 2009

Santa Clara River Feasibility Study June, 2011

Authors:

Ventura County Watershed Protection District Los Angeles County Department of Public Works U. S. Army Corps of Engineers, Los Angeles District

Reviewers:

Bruce Rindahl, VCWPD Iraj Nasseri, LACDPW Jody Fischer, USACE

TABLE OF CONTENTS

Section 1	Intro	oduction	1
	1.1	Purpose and scope	1
	1.2	Supporting Documents	2
	1.3	Intermediate Discharge Calculations	3
	1.4	Continuous HSPF Model Creation and Use	3
	1.5	HSPF Model Design Storm Peaks	3
	1.6	Future Condition Flows	3
	1.7	Calibrated Rainfall Factors	4
Section 2	Ven	tura County Modeling and Results	4
	2.1	Ventura County Stream Gage Frequency Analyses	4
	2.2	Frequency Curves and HSPF Data Comparison	5
		Table 2-1. Piru Lake Peak Outflow Design Storm Multipliers	5
		Figure 2-1. Gage Frequency Curves and HSPF Design Storm Peaks	6
	2.3	Mainstem Santa Clara River Flows	7
	2.4	Mainstem Peak Flow Modeling	7
		Table 2-2. Mainstem 100-Yr Flow Comparison Table	8
	2.5	Design Storm Peak Summary Table	8
		Table 2-3. HSPF Model Peak Flow Results for Ventura County	9
Section 3	Los	Angeles County Modeling and Results	14
	3.1	Los Angeles County Stream Gage Frequency Analyses	14
		Figure 3-1. Stream Gage Locations for Los Angeles County	14
	3.2	Frequency Curves and HSPF Data Comparison	15
		Table 3-1. HSPF and FFA 100-Yr Flow Comparison for Los Angeles County	15
		Table 3-2. Discharge Frequency Multipliers for Los Angeles County	15
		Figure 3-2. Gage Frequency Curves and HSPF Design Storm Peaks	16
	3.3	Mainstem Peak Flow Modeling	17
		Table 3-3. Mainstem 100-Yr Peak Flows for Los Angeles County	17
	3.4	Design Storm Peak Summary Table	17
		Table 3-4. Design Storm Peak Flow Results for Los Angeles County	18
Section 4	Refe	erences	24
Section 5	Арр	endix A- Ventura County FFA Output and Probability Plots	25
	5.1	Hopper Creek FFA	25
	5.2	Santa Paula Creek FFA	29

TABLE OF CONTENTS

	5.3	Sespe Creek at Wheeler Springs FFA	34
	5.4	Sespe Creek at Fillmore FFA	38
	5.5	Santa Clara River at Montalvo FFA	43
	5.6	Santa Clara River at County Line FFA	47
Section 6	Арр	endix B- Los Angeles County FFA Output and Probability Plots	51
	6.1	Aliso Creek at Blum Ranch FFA	51
	6.2	Santa Clara River at Lang Railroad Bridge FFA	54
			57

Ac. Acres

ASCE American Society of Civil Engineers

ATR Agency Technical Review

cfs Cubic feet per second

Corps US Army Corps of Engineers

District Ventura County Watershed Protection District, formerly Flood Control District (VCFCD)

FEMA Federal Emergency Management Agency

FIS Flood Insurance Study

Fps Feet per second

Ft Feet

HSPF Hydrologic Simulation Program - FORTRAN

In. Inches

LACDPW Los Angeles County Department of Public Works

Mi. Miles

NRCS Natural Resources Conservation Service

Q100 100-yr peak discharge

PMP Project Management Plan

SCS Soil Conservation Service

Sq. Mi. Square miles

Tc Time of Concentration

VCWPD Ventura County Watershed Protection District

Yr Year

SECTION 1 INTRODUCTION

The Santa Clara River Feasibility Study is a joint project undertaken by Federal and Local Agencies to evaluate the watershed and identify opportunities for projects to resolve any problems. The activities in the Feasibility study are outlined in the Project Management Plan (PMP) and include creation of hydrologic, hydraulic, and sediment transport models of the watershed to evaluate natural, existing, and future conditions. The study partners are the Ventura County Watershed Protection District (VCWPD), the Los Angeles County Department of Public Works (LACDPW), and the Los Angeles District of the U. S. Army Corps of Engineers (Corps).

A hydrology model of the watershed was the first product specified in the PMP to be completed. A hydrology report describing the creation and use of the Hydrologic Simulation Program – FORTRAN (HSPF) model finalized in December, 2009 was prepared by AQUA TERRA Consultants (AQUA TERRA) hired by VCWPD. This continuous model simulates surface water runoff in the streams included in the model for the period from October, 1959 to September, 2005 for natural (pre-European) and existing (2005) baseline land use conditions. The continuous model was also used to provide design storm 100-yr peaks (Q100) for the study tributaries to be included in the hydraulic modeling effort of the PMP as described in Appendices L and M of the 2009 AQUA TERRA Report. The peak discharges for the other design storm levels to be evaluated using the hydraulic model were provided through the use of design storm ratios developed with stream gage flow frequency analysis data.

In January, 2010, the Corps instituted a new Agency Technical Review (ATR) process for all ongoing feasibility studies where the decision-making process about potential projects in the watershed had not been finalized. The requirements of the ATR led the Corps to ask for additional technical information to be supplied in support of the hydrology data provided by the study partners to the Corps and their consultant for the hydraulic modeling project, CDM. This request has led to the preparation of this addendum to provide the requested information to the Corps' ATR reviewers.

1.1 PURPOSE AND SCOPE

The information requested by the Corps includes the following data that were either not included in the AQUA TERRA (2009) Report or require updating as follows:

- 1. Appendices L and M of the AQUA TERRA Report did not provide a comparison of the stream gage frequency curves used in the HSPF model calibration and the resultant HSPF model results.
- 2. The Appendices did not provide all of the stream gage frequency analysis data used in the model calibration.
- 3. The design storm peaks provided in the Appendices were only provided at the outlet of each tributary subarea included in the HSPF model. Subsequently, the Corps requested that each County furnish intermediate discharges along each tributary for use by CDM in the hydraulic modeling. The intermediate discharges were calculated using USGS regression equations developed for coastal Southern California watersheds.

- 4. LACDPW provided the 20-yr discharges in their tributary summary table but labeled them as 25-yr discharges. Because CDM requires the 25-yr discharges, LACDPW has provided the 25-yr discharges in their summary table included in this report.
- 5. The HSPF report did not provide any design peak data for the Santa Clara River Mainstem. This was because the intention of the study was to use the mainstem peak flows from the Federal Emergency Management Agency (FEMA) Flood Insurance Study (FIS) to prevent confusion over the existence of two mainstem peak flow data sets. Because FEMA developed their own hydrology model of the LA County portion of the watershed, their peaks are not necessarily consistent with the HSPF model results, and are generally lower than the HSPF model results. For the Ventura County portion of the watershed, VCWPD supplied mainstem peak flows to FEMA based on a 2006 report presenting the stream gage flow frequency analysis results and intermediate discharges. The 2006 report data was used to calibrate the HSPF model and resulted in mainstem peaks that match to within 5% or less. This addendum provides the mainstem flows for use by CDM in their hydraulic modeling.

Therefore, the purpose of this addendum is to document the methodologies used in generating the above additional information for use in this study and provide the peak flow data.

1.2 SUPPORTING DOCUMENTS

The following documents provide information that was used for the HSPF model:

- 1. VCFCD, 1994. Santa Clara River 1994 Hydrology Study. Ventura County Public Works Agency. October 27, 1994. This report published by VCFCD (now VCWPD) was a collaborative effort between VCFCD and the Corps. VCFCD supplied the available gage data and supporting calculations, while the Corps generated a watershed model to adjust reported annual peaks for the presence or absence of several major reservoirs and did a multiple linear regression analysis to supply missing peaks for the analysis. The resultant peak flow set showed the estimated effects of the two reservoirs built in 1973 by reducing a 1969 annual peak of 165,000 cfs to 147,000 cfs for use in the frequency analysis. The Corps did a graphical analysis of the revised flow data to provide the 2- through 500-yr peak discharges at the stream gage locations and then used historic hydrology model ratios to provide peak flows for intermediate locations along the mainstem in Ventura County.
- 2. VCWPD, 2006. Santa Clara River 2006 Hydrology Update. Ventura County Watershed Protection District, Advanced Planning Section. December, 2006. VCWPD updated the 1994 analysis by extending the dataset used in the 1994 analysis though Water Year 2005 (ending September 30, 2005). The report used standard Bulletin 17B (USGS, 1982) methods to provide design flow peak discharges and applied the same design storm ratios used in the 1994 Report to provide discharges at intermediate locations between the stream gages. These data were provided to FEMA for their use in the on-going Santa Clara River FIS. These data were also used to calibrate the Santa Clara River HSPF model for this study.

1.3 INTERMEDIATE DISCHARGE CALCULATIONS

The Corps requested that the study partners working with the HSPF model to produce the 100-yr peak discharges and other design storm peaks and also calculate intermediate discharges for use by the hydraulic modelers. The criterion was to provide discharges for reaches so that no reach was longer than about 1.5 mi without having another discharge available.

The standard method for calculating discharges for upstream areas is provided by the USGS (1993). The Santa Clara Watershed is in the South Coast Region as defined by the report. The regression equation used to estimate the Q100 for ungaged watersheds is the following: Q100 = 1.95 $A^{0.83}$ p^{1.87} where Q100 is in cfs, A is area in sq. mi., and p is annual precipitation in inches. If Q100 is available from a hydrology model, then the equation can be used to calculate a Q100 for an upstream tributary location based on a reduced tributary area. Because the tributaries included in the study had relatively small watersheds, the annual precipitation can be assumed to be constant. The calculation to obtain an upstream Q100 then becomes: Q100_{us} = Q100_{ds} (A_{us}/A_{ds})^{0.83} where us indicates the upstream location for the intermediate discharge and ds indicates the downstream location providing the Q100 from the HSPF model. The tables in Sections 2 and 3 show the intermediate discharges.

1.4 CONTINUOUS HSPF MODEL CREATION AND USE

The AQUA TERRA (2009) report describes in detail how the model was prepared using available soil, land use, groundwater, surface water, and rain data. The report describes the calibration and validation efforts and data sets used to match the historic runoff data during those periods. Then the model presents the results of running the model for the entire simulation period from October 1959 to September 2005. For more information about the model preparation and calibration efforts, please see that document.

1.5 HSPF MODEL DESIGN STORM PEAKS

Because AQUA TERRA did not have enough staff to develop design storm peaks for the project in August 2008, VCWPD and LACDPW provided staff to do the modeling efforts described in Appendices L and M of the AQUA TERRA (2009) Report. The development of the 100-yr design storm hyetographs, use of areal reduction (AR) factors from the HEC-HMS model, and calibration of the model to tributary stream gage frequency results is described in detail in Appendices L and M. The appendices also discuss the methods to calculate design storm ratios used to provide peaks for the other design storms.

1.6 FUTURE CONDITION FLOWS

The Project Management Plan (PMP) developed for the study has a specific task for the development of a future conditions HSPF model. There has been extensive discussion between the project participants about the assumptions to be used in this effort, including sources of future land use data, and whether new development is expected to construct detention basins to mitigate any increase in peak flow. When the

assumptions are finalized and funds are available for this portion of the study, the HSPF model will be revised in order to provide the necessary hydrologic data.

1.7 CALIBRATED RAINFALL FACTORS

Aqua Terra's (2009) report on the continuous HSPF model presented maps showing the locations of the precipitation gages available for use in the model, average annual precipitation isohyetals, and Thiessen polygons. Aqua Terra's approach was to use the Thiessen polygons to assign the rain gage data sets to subareas. Then the average annual rainfall at the gage location was compared to the average annual rainfall for the subarea based on the isohyetal map. If rainfall depths were different, the rainfall data were adjusted by the ratio of the two averages using the MFACT parameter in the HSPF input file. This procedure accounted for orographic differences between the rain gage locations and the average subarea elevations in the model. For the Ventura County portion of the continuous model, the MFACT values ranged from 0.84 to 1.12.

For the design storm model, the MFACT parameter was used in the calibration to add two additional factors. The first factor accounted for areal reduction of the point rainfall used in the design storm model due to the size of the watershed tributary to the stream gage location or watershed outlet. The second factor was used to calibrate the Design Storm HSPF model to match the stream gage flow frequency results. The final MFACTs applied to the subareas in the Design Storm Model had three components: the Continuous Model Mfact x AR factor x Calibration Factor. The various factors used at the stream gage calibration sites for Ventura County are shown in Table 2 of Appendix L. The Continuous Model MFACTs were 0.9 or 1.07. The AR factors were 0.96 or 0.975. The calibration factors were 0.94, 1.0, and 1.14.

SECTION 2 VENTURA COUNTY MODELING AND RESULTS

This section provides additional information on the hydrology results presented in Appendix L of the AQUA TERRA Report (2009).

2.1 VENTURA COUNTY STREAM GAGE FREQUENCY ANALYSES

As presented in Appendix L, there were four tributary stream gages in Ventura County with relatively long records that were used to calibrate the HSPF Design Storm Model to provide tributary design storm peaks for the hydraulic modeling effort. Other tributary stream gages in Ventura County have short records that are not considered suitable for use in frequency analysis studies to provide design storm peaks.

The HEC-FFA flow frequency analysis (FFA) output for the four gages is provided in Appendix A along with HEC-SSP probability plots of the annual peak data and the log Pearson III fit. The data sets only include data through 2005 as it is VCWPD's policy to only update frequency analyses after a relatively big storm has occurred that could make the 100-yr FFA peaks increase. A relatively big storm is defined

as an approximately 10-yr storm or larger based on the current FFA. It is our experience that additional peaks from relatively dry years added to the record cause the FFA results to decrease slightly. This policy prevents the FFA result from changing every year and facilitates channel design using the FFA information.

In addition, there are two stream gages on the mainstem in Ventura County that were the basis for the work presented in VCWPD's 2006 report. The FFA results and plots are also provided in Appendix A.

2.2 Frequency Curves and HSPF Data Comparison

The 100-yr peak frequency data presented in Appendix A was used to calibrate the design storm HSPF model. The average design storm ratios developed for Ventura County stream gages were used to provide the other design storm peak flows from the calibrated 100-yr design storm model. This resulted in two sets of ratios, one set for mostly undeveloped watersheds and one set for urbanized watersheds as presented in Appendix L. An additional set of multipliers was developed for the peak flows from Piru Lake by fitting a curve through the points provided in the FEMA 1997 FIS for Unincorporated Ventura County and interpolating for the other storm peaks.

Table 2-1. Piru Lake Peak Outflow Design Storm Multipliers

Year	2	5	10	25	50	100	200	500
Flow	1,260	1,705	2,500	5,570	33,000	41,000	48,500	60,000
Design Storm Ratio	0.031	0.042	0.061	0.136	0.805	1.000	1.183	1.463

Note: Data in Italics from 1997 FIS

Figure 2-1 shows the frequency curves from Appendix B plotted against the HSPF model and design storm ratio results.

EXCEDENCE FREQUENCY PER HUNDRED YEARS, PERCENT 1,000,000 50 20 10 0.5 0.2 100,000 Montalvo FFA Flow (cfs) Sespe Fillmore FFA SCR @ Co Line FFA Santa Paula Ck 10,000 **FFA** Sespe Wheeler FFA Hopper Ck FFA □ SCR Montalvo **HSPF** 1,000 ♦ SCR @ Co Line **HSPF** Sespe Fillmore **HSPF** □ Sespe Wheeler **HSPF** → Santa Paula **HSPF** 100 25 50 100 200 500 10 → Hopper HSPF RECURRENCE INTERVAL, YRS

Figure 2-1. Gage Frequency Curves and HSPF Design Storm Peaks

Note: Solid Lines are from frequency analyses; Points are from HSPF Model with Design Storm Ratios applied.

The figure indicates that the adopted values for events more common/frequent than the 1 in 50 chance event are lower than the 2006 FFA frequency results for the SCR at Montalvo and Sespe Creek at

Fillmore and higher for the Sespe Creek at Wheeler gages. The stream gages for these locations all have more than 50 years of data, so the FFA results for these frequencies could be more accurate than applying a ratio to the HSPF model 1 in 100 chance peak flow, as was done in this study. If design data for events more frequent than the 1 in 50 chance event are needed such as for ecosystem restoration studies, then more specific hydrology will be prepared as part of that detailed study, possibly using the stream gage data to generate the design flows.

2.3 Mainstem Santa Clara River Flows

The Santa Clara River 2006 Hydrology Report performs a statistical analysis of regulated flows for the mainstem of the river. The 1 in 200 and 1 in 500 chance peak flow frequencies (as derived from 2006 Study FFA output) for mainstem locations downstream of Piru Creek are potentially flawed. The 1994 Hydrology Study (pg 1) states that historically speaking, Piru Lake has been able to capture all floods (not passed flows downstream) for all but the 1969 flood. This means that 441 square miles of potential runoff (38% of the drainage area for the SCR at Fillmore and 27% of the drainage area for the SCR at Montalvo) are not included in the peak flows at the Montalvo gage (except the 1969 flood) since 1956.

Extrapolation of the FFA results for Montalvo for the 1 in 200 and 1 in 500 chance floods could be questioned, given that Lake Piru will most likely be spilling during these rare events. However, for this study the adopted peak flow frequency for mainstem locations downstream of the Sespe Creek confluence should be acceptable for the following reasons. First, an analysis of the 1978 flood peak data indicates that 71% of the peak flow at Montalvo was due to Sespe Crk runoff (1994 Report). This indicates that Sespe Crk is a huge factor historically at this location. Secondly, the 1 in 200 and 1 in 500 chance peaks adopted for this study are higher than the 2006 FFA results. This is due to the fact that ratios applied to the 1 in 100 chance peak flows in HSPF to achieve other frequencies were based on an analysis of frequency curves at multiple stream gages.

For the SCR at Montalvo, the ratio applied was 1.345 and 1.952, respectively, to obtain the 1 in 200 and and 1 in 500 events, which is more than the 1.265 and 1.650 ratios found in the 2006 FFA frequency curve for Montalvo. Furthermore, the results for locations downstream of Piru Crk and upstream of Sespe Crk such as the SCR at Fillmore are acceptable because those results are based on applying a ratio to the 2006 SCR at County Line FFA frequency curve, which is based on a relationship found in the modeling of the SPF flood (1994 Study) using a rainfall-runoff model. Modeling the SPF (approximately a 1 in 200 chance event in the 1994 report) would presumably provide a reasonable estimate of the relationship between the SCR at County Line and SCR at Fillmore for rare floods when Piru Lake (Santa Felicia Dam) is spilling

2.4 . Mainstem Peak Flow Modeling

As discussed above, the mainstem peak flows were calibrated against the gage data provided in the VCWPD (2006) Report. The modeling effort followed the procedure described in Appendix L of determining an AR factor for the Ventura County mainstem run. The AR curve is relatively flat for watersheds ranging from 1,000 to 1,600 sq. mi. and therefore it was not necessary to vary the AR factor for different points along the mainstem comparable to the flow locations provided in the 2006 Report. The AR factor was applied to the rainfall factor used in the HSPF model (MFACT). Reservoirs such as

Lake Pyramid, Lake Piru, and Lake Castaic were set to be full at the start of the design storm run to be consistent with FEMA requirements for floodplain mapping of watersheds with water storage reservoirs. Table 2-2 shows that the HSPF model results are within 5% or less of the 2006 Report peaks.

Table 2-2. Mainstem 100-Yr Flow Comparison Table

HSPF Reach Number	Mainstem Location	SCR HSPF Model Results (cfs)	SCR 2006 Freq Study (cfs)	Percent Diff. (2006 vs HSPF)	SCR 1994 Q100 (cfs)
320	SCR County Line Gage	66,260	66,600	0.5%	60,000
529	Piru Ck @ SCR confluence	41,100	NA	NA	41,000
610	SCR downstream of Piru Ck	101,000	NA	NA	98,000
620	SCR downstream of Hopper Ck	108,000	NA	NA	NA
630	SCR tributaries between Hopper and Pole Cks	109,000	NA	NA	NA
640	SCR upstream of Pole Ck	111,000	NA	NA	NA
650	SCR upstream of Sespe Ck	111,000	108,400	-2.4%	NA
810	SCR downstream of Sespe Ck	210,000	221,000	5.0%	196,000
820	SCR tributaries between Sespe and Sta Paula Cks	210,000	NA	NA	NA
830	SCR upstream of Sta Paula	216,000	NA	NA	NA
840	SCR downstream of Sta Paula	226,000	NA	NA	200,000
850	SCR nr Adams, Fagan	226,000	NA	NA	NA
860	SCR nr Ellsworth Barranca	226,000	NA	NA	NA
870	SCR nr Franklin/Wasson Barrancas	226,000	NA	NA	NA
880	SCR nr Harmon Barranca	227,000	226,000	-0.4%	200,000

2.5 DESIGN STORM PEAK SUMMARY TABLE

Table 2-3 shows the HSPF design storm peak flows for the mainstem and tributaries for use in the hydraulic modeling, including any intermediate discharges calculated with the USGS regression equation discussed above (name shown in red). The "Study" column indicates whether the HSPF results were provided to FEMA for their floodplain mapping study, will be used by CDM for the Feasibility Study, or will be used for design studies by the District (WPD).

Table 2-3. HSPF Model Peak Flow Results for Ventura County

Name	HSPF Sub-Area	Study	Area (ac.)	Cum. Area (sq. mi)	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	200-yr	500-yr	Multiplier
Santa Clara River	400	FEMA	1,274	641.0	2,320	7,750	14,640	24,780	44,730	66,260	95,020	146,960	LA App M
SCR Nr Piru	410	FEMA	1,716	643.6	2,320	7,750	14,640	24,780	44,730	66,260	95,020	146,960	LA App M
Santa Clara River	420	FEMA	3,060	648.4	2,320	7,750	14,640	24,780	44,730	66,260	95,020	146,960	LA App M
Piru Creek	527	CDM	32,073	-	1,263	1,709	2,506	5,584	33,080	41,100	48,603	60,146	Piru
Piru Creek	528	CDM	7,412	-	1,263	1,709	2,506	5,584	33,080	41,100	48,603	60,146	Piru
Piru Creek	529	FEMA	2,617	435.9	1,263	1,709	2,506	5,584	33,080	41,100	48,603	60,146	Piru
Warring Cyn DB	601	WPD	681	1.1	101	337	613	1,133	1,664	2,340	3,147	4,568	Undeveloped
Real Wash DB	602	WPD E	166	0.3	25	82	149	275	405	569	765	1,111	Undeveloped
Warring Downstream	604	CDM	136	1.3	105	348	634	1,171	1,721	2,420	3,255	4,724	Undeveloped
Warring and Real	605	CDM	384	2.1	128	426	776	1,433	2,105	2,960	3,981	5,778	Undeveloped
Edwards Upper (1)	1603	CDM	390	-	26	87	158	292	429	604	812	1,179	Undeveloped
Edwards	603	CDM	1,292	2.8	94	311	566	1,045	1,536	2,160	2,905	4,216	Undeveloped
Santa Clara River	610	FEMA	7,087	1,100.4	4,373	14,544	26,462	48,884	71,811	101,000	135,845	197,152	Undeveloped
Hopper Cyn	611	FEMA	4,664	-	393	1,308	2,379	4,395	6,456	9,080	12,213	17,724	Undeveloped
Hopper Cyn	612	FEMA	6,367	-	749	2,491	4,533	8,373	12,300	17,300	23,269	33,770	Undeveloped
Hopper Cyn	613	FEMA	4,197	-	840	2,794	5,083	9,390	13,793	19,400	26,093	37,869	Undeveloped
Hopper Cyn	614	FEMA	744	25.0	844	2,808	5,109	9,438	13,865	19,500	26,228	38,064	Undeveloped
Fairview Cyn	619	CDM	556	0.9	58	192	348	644	946	1,330	1,789	2,596	Undeveloped
Santa Clara River	620	FEMA	3,113	1,131.1	4,676	15,552	28,296	52,272	76,788	108,000	145,260	210,816	Undeveloped
Santa Clara River	630	FEMA	2,017	1,134.2	4,719	15,696	28,558	52,756	77,499	109,000	146,605	212,768	Undeveloped
Basolo Ditch	631	FEMA	1,288	1.7	70	234	426	787	1,155	1,625	2,186	3,172	Undeveloped
Pole Creek	632	FEMA	2,298	-	343	1,140	2,075	3,833	5,631	7,920	10,652	15,460	Undeveloped
Pole Creek	633	FEMA	2,928	-	330	1,097	1,996	3,688	5,418	7,620	10,249	14,874	Undeveloped
Pole Creek	634	FEMA	347	8.7	320	1,064	1,936	3,577	5,254	7,390	9,940	14,425	Undeveloped
Santa Clara River	640	FEMA	2,284	1,148.2	4,806	15,984	29,082	53,724	78,921	111,000	149,295	216,672	Undeveloped
Grimes Canyon	641	FEMA	3,525	4.7	194	644	1,171	2,163	3,178	4,470	6,012	8,725	Undeveloped

Name	HSPF Sub-Area	Study	Area (ac.)	Cum. Area (sq. mi)	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	200-yr	500-yr	Multiplier
Bardsdale Wash	1650	WPD	390	-	20	67	123	226	332	468	629	913	Undeveloped
Santa Clara River	650	FEMA	1,902	1,155.9	4,806	15,984	29,082	53,724	78,921	111,000	149,295	216,672	Undeveloped
Sespe Creek	701	FEMA	9,474	-	558	1,858	3,380	6,244	9,172	12,900	17,351	25,181	Undeveloped
Sespe Creek	702	FEMA	7,985	ı	870	2,894	5,266	9,728	14,291	20,100	27,035	39,235	Undeveloped
Sespe Creek	703	FEMA	5,792	ı	1,108	3,686	6,707	12,390	18,202	25,600	34,432	49,971	Undeveloped
Sespe Creek @ Wheeler Sprgs	704	FEMA	8,489	49.6	1,394	4,637	8,436	15,585	22,894	32,200	43,309	62,854	Undeveloped
Sespe Creek	705	FEMA	20,596	-	2,117	7,042	12,812	23,668	34,768	48,900	65,771	95,453	Undeveloped
Sespe Creek	706	FEMA	21,963	1	2,758	9,173	16,689	30,831	45,291	63,700	85,677	124,342	Undeveloped
Sespe Creek	707	FEMA	15,063	-	3,182	10,584	19,257	35,574	52,259	73,500	98,858	143,472	Undeveloped
Sespe Creek	708	FEMA	16,813	-	3,632	12,082	21,982	40,608	59,653	83,900	112,846	163,773	Undeveloped
Sespe Creek	709	FEMA	10,944	-	3,935	13,090	23,816	43,996	64,630	90,900	122,261	177,437	Undeveloped
Sespe Creek	711	FEMA	8,622	-	4,169	13,867	25,231	46,609	68,469	96,300	129,524	187,978	Undeveloped
Sespe Creek	712	FEMA	23,928	-	5,845	19,440	35,370	65,340	95,985	135,000	181,575	263,520	Undeveloped
Sespe Creek nr Fillmore	713	FEMA	11,051	251.1	5,888	19,584	35,632	65,824	96,696	136,000	182,920	265,472	Undeveloped
Sespe Creek nr Fillmore	722	FEMA	386	-	5,888	19,584	35,632	65,824	96,696	136,000	182,920	265,472	Undeveloped
Sespe Creek nr Fillmore	723	FEMA	2,003	-	6,018	20,016	36,418	67,276	98,829	139,000	186,955	271,328	Undeveloped
Sespe Creek nr Fillmore	724	FEMA	1,735	-	6,018	20,016	36,418	67,276	98,829	139,000	186,955	271,328	Undeveloped
Sespe Creek nr Fillmore	725	FEMA	334	-	6,061	20,160	36,680	67,760	99,540	140,000	188,300	273,280	Undeveloped
Sespe Creek nr Fillmore	726	FEMA	1,656	-	6,061	20,160	36,680	67,760	99,540	140,000	188,300	273,280	Undeveloped
Sespe Creek nr Fillmore	727	FEMA	2,485	-	5,888	19,584	35,632	65,824	96,696	136,000	182,920	265,472	Undeveloped
Sespe Creek nr Fillmore	728	FEMA	378	265.2	5,801	19,296	35,108	64,856	95,274	134,000	180,230	261,568	Undeveloped
Boulder Creek	801	WPD	3,983	6.2	204	678	1,234	2,280	3,349	4,710	6,335	9,194	Undeveloped
Reimer Upstream	2806	CDM	721	-	49	164	299	552	810	1,140	1,533	2,225	Undeveloped
Reimer Intermediate	1806	CDM	1,415	-	86	287	523	966	1,418	1,995	2,683	3,894	Undeveloped
Reimer Ditch	806	CDM	3,670	5.7	190	634	1,153	2,130	3,128	4,400	5,918	8,589	Undeveloped
Bear U/S	2807	CDM	614	-	65	218	396	731	1,074	1,511	2,032	2,949	Undeveloped

Name	HSPF Sub-Area	Study	Area (ac.)	Cum. Area (sq. mi)	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	200-yr	500-yr	Multiplier
Bear Intermediate	1807	CDM	835	-	84	281	511	944	1,386	1,950	2,623	3,806	Undeveloped
Bear Ck	807	CDM	1,420	2.2	131	436	794	1,467	2,154	3,030	4,075	5,915	Undeveloped
O'Leary Foothills	808	CDM	1,258	-	139	464	844	1,558	2,289	3,220	4,331	6,285	Undeveloped
O'Leary Intermediate	1809	CDM	369	-	148	492	895	1,653	2,429	3,416	4,594	6,668	Undeveloped
O'Leary Ck	809	CDM	1,018	3.6	163	541	985	1,820	2,673	3,760	5,057	7,340	Undeveloped
Santa Clara River	810	FEMA	529	1,440	9,308	30,960	56,330	104,060	1152,865	215,000	289,175	419,680	Undeveloped
Balcom Upstream	2812	CDM	1,365	-	99	331	601	1,111	1,632	2,295	3,087	4,480	Undeveloped
Balcom Intermediate	1812	CDM	1,602	-	113	377	687	1,269	1,864	2,621	3,526	5,117	Undeveloped
Balcom Ck	812	CDM	3,146	4.9	199	661	1,203	2,222	3,263	4,590	6,174	8,960	Undeveloped
Santa Clara River	820	FEMA	2,042	1,447.7	9,308	30,960	56,330	104,060	1152,865	215,000	289,175	419,680	Undeveloped
Orcutt Canyon	821	FEMA	3,087	3.7	229	763	1,389	2,565	3,768	5,300	7,129	10,346	Undeveloped
Timber Upstream	3822	CDM	723	-	76	254	461	852	1,252	1,761	2,368	3,437	Undeveloped
Timber Intermediate 1	2822	CDM	1,070	-	106	351	639	1,180	1,733	2,438	3,279	4,758	Undeveloped
Timber Intermediate 2	1822	CDM	1,398	-	132	438	797	1,473	2,164	3,043	4,093	5,941	Undeveloped
Timber Cyn	822	CDM	2,561	4.0	218	724	1,318	2,435	3,576	5,030	6,765	9,819	Undeveloped
SCR abv Sta Paula	830	CDM	3,698	1,461.2	9,351	31,104	56,592	104,544	153,576	216,000	290,520	421,632	Undeveloped
Santa Paula Creek	831	CDM	11,154	-	926	3,082	5,607	10,358	15,215	21,400	28,783	41,773	Undeveloped
Santa Paula Creek	832	CDM	3,882	-	1,095	3,643	6,629	12,245	17,988	25,300	34,029	49,386	Undeveloped
Sisar Creek	833	WPD	7,375	11.5	494	1,642	2,987	5,518	8,105	11,400	15,333	22,253	Undeveloped
Santa Paula Creek	834	CDM	3,136	39.9	1,688	5,616	10,218	18,876	27,729	39,000	52,455	76,128	Undeveloped
Santa Paula Creek	835	CDM	3,779	45.8	1,706	5,674	10,323	19,070	28,013	39,400	52,993	76,909	Undeveloped
Fagan DB Upstream	2836	CDM	235	-	20	67	122	226	332	466	627	910	Undeveloped
Fagan DB intermed.	1836	CDM	1,045	-	70	232	422	779	1,144	1,609	2,164	3,141	Undeveloped
Fagan Cyn DB	836	CDM	1,880	-	113	377	686	1,268	1,863	2,620	3,524	5,114	Undeveloped
Fagan Cyn	837	CDM	1,363	5.1	197	655	1,192	2,202	3,235	4,550	6,120	8,882	Undeveloped
Peck Upstream	1838	CDM	70	-	11	35	64	118	173	243	327	474	Undeveloped
Peck Rd Drn	838	CDM	797	1.2	304	604	849	1,208	1,504	1,830	2,180	2,749	Developed
Santa Clara River	840	FEMA	3,173	1,569.7	9,784	32,544	59,212	109,384	160,686	226,000	303,970	441,152	Undeveloped

Name	HSPF Sub-Area	Study	Area (ac.)	Cum. Area (sq. mi)	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	200-yr	500-yr	Multiplier
Adams Upstream	3841	CDM	1,122	-	81	270	491	907	1,332	1,873	2,519	3,657	Undeveloped
Adams Intermediate 1	2841	CDM	3,552	=	211	702	1,277	2,360	3,466	4,875	6,557	9,516	Undeveloped
Adams Intermediate 2	1841	CDM	4,717	-	267	888	1,616	2,986	4,386	6,169	8,298	12,043	Undeveloped
Adams Barranca	841	CDM	5,398	-	299	994	1,808	3,340	4,906	6,900	9,281	13,469	Undeveloped
Adams Barranca	842	CDM	412	9.1	298	991	1,803	3,330	4,892	6,880	9,254	13,430	Undeveloped
O'Hara Canyon	843	CDM	2,006	-	144	480	872	1,612	2,368	3,330	4,479	6,500	Undeveloped
Haines Barranca	844	CDM	227	3.5	128	425	773	1,428	2,097	2,950	3,968	5,758	Undeveloped
SCR @ Freeman Div	850	FEMA	1,722	1,584.9	9,784	32,544	59,212	109,384	160,686	226,000	303,970	441,152	Undeveloped
Wheeler Upstream	2851	CDM	819	-	69	229	417	770	1,131	1,591	2,140	3,106	Undeveloped
Wheeler Intermediate	1851	CDM	2,907	-	197	656	1,193	2,204	3,238	4,554	6,125	8,889	Undeveloped
Wheeler Canyon	851	CDM	4,788	7.5	298	992	1,805	3,335	4,899	6,890	9,267	13,449	Undeveloped
Todd Barranca	852	CDM	1,246	9.4	288	958	1,742	3,219	4,728	6,650	8,944	12,981	Undeveloped
Briggs Road Drain	853	CDM	800	1.3	53	177	322	595	875	1,230	1,654	2,401	Undeveloped
Cummings Road Drain	854	WPD	1,223	1.9	78	259	472	871	1,280	1,800	2,421	3,514	Undeveloped
Santa Clara River	860	FEMA	2,287	1,608.6	9,784	32,544	59,212	109,384	160,686	226,000	303,970	441,152	Undeveloped
Aliso Canyon	861	CDM	6,538	-	420	1,395	2,539	4,690	6,890	9,690	13,033	18,915	Undeveloped
Ellsworth Bar.	862	CDM	2,765	14.5	412	1,371	2,494	4,608	6,769	9,520	12,804	18,583	Undeveloped
SCR @ Saticoy	870	FEMA	745	1,624.3	9,784	32,544	59,212	109,384	160,686	226,000	303,970	441,152	Undeveloped
Franklin Bar. DB	871	FEMA	323	-	36	120	219	404	594	835	1,123	1,630	Undeveloped
Franklin Barranca	872	FEMA	603	-	60	199	362	668	981	1,380	1,856	2,694	Undeveloped
Wason Barranca	873	WPD	1,996	-	110	364	663	1,225	1,799	2,530	3,403	4,939	Undeveloped
Frank/Wason Barranca	874	WPD	244	4.9	171	569	1,035	1,912	2,808	3,950	5,313	7,710	Undeveloped
SCR @ Montalvo	880	FEMA	5,137	1,637.3	9,828	32,688	59,474	109,868	161,397	227,000	305,315	443,104	Undeveloped
El Rio Drain	881	FEMA	864	2.6	174	347	487	693	863	1,050	1,251	1,577	Developed
Brown Upstream	3882	CDM	383	-	27	89	163	301	442	621	836	1,213	Undeveloped
Brown Foothills	2882	CDM	1,162	-	68	225	409	755	1,110	1,561	2,099	3,047	Undeveloped
Brown Intermediate	1882	CDM	1,861	-	100	332	605	1,117	1,641	2,307	3,103	4,504	Undeveloped

Name	HSPF Sub-Area	Study	Area (ac.)	Cum. Area (sq. mi)	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	200-yr	500-yr	Multiplier
Brown Barranca	882	CDM	2,269	3.2	118	392	713	1,316	1,934	2,720	3,658	5,309	Undeveloped
Harmon Upstream	3883	CDM	2,090	-	125	415	756	1,396	2,051	2,885	3,881	5,632	Undeveloped
Harmon Foothill	2883	CDM	2,734	-	156	519	945	1,745	2,564	3,606	4,850	7,039	Undeveloped
Harmon Intermediate	1883	CDM	3,110	-	174	578	1,051	1,942	2,853	4,013	5,397	7,833	Undeveloped
Harmon Barranca	883	CDM	3,695	5.8	200	667	1,213	2,241	3,292	4,630	6,227	9,038	Undeveloped
Sudden Upstream	884	CDM	292	-	25	82	149	276	405	570	767	1,113	Undeveloped
Sudden Barr	885	CDM	465	1.2	227	452	636	904	1,126	1,370	1,632	2,058	Developed
Clarke Barr	886	CDM	809	1.3	256	508	715	1,016	1,266	1,540	1,834	2,313	Developed
Santa Clara River	890	FEMA	2,020	1,654.5	9,700	32,260	58,690	108,420	159,260	224,000	301,280	437,250	Undeveloped
Patterson Rd Drain	891	FEMA	893	1.8	241	479	673	957	1,192	1,450	1,727	2,178	Developed
Santa Clara River	900	FEMA	2,504	1,660.2	9,570	31,820	57,900	106,960	157,131	221,000	297,250	431,390	Undeveloped
Santa Clara River	910	FEMA	256	1,660.6	9,570	31,820	57,900	106,960	157,131	221,000	297,250	431,390	Undeveloped

Note (1): Calculated 100-yr Discharges for Intermediate Reaches Have Names in Red Font and 4 digit Subarea Numbers.

SECTION 3 LOS ANGELES COUNTY MODELING AND RESULTS

This section provides additional information on the hydrology results presented in Appendix M of the AQUA TERRA Report (2009).

3.1 Los Angeles County Stream Gage Frequency Analyses

As presented in Appendix M, there were four tributary stream gages in Los Angeles County with relatively long records that were used to calibrate the HSPF Design Storm Model to provide tributary design storm peaks for the hydraulic modeling effort.

The HSPF model was calibrated to match each gage's peak 100-year frequency flow rate from the flow frequency analysis (FFA). The FFA was performed by Ventura County Watershed Protection District with the results for Aliso Canyon and the County Line being from the Santa Clara River 2006 Hydrology Update. A separate FFA was computed using the station skew factors and was used for the results at the Lang and I-5 runoff gages. The HEC-FFA output for the gages is provided in Appendix B along with HEC-SSP probability plots of the annual peak data and the log Pearson III fit. The data sets only include data through 2005. Figure 3.1 shows the stream gage locations in Los Angeles County.

Figure 3-1. Stream Gage Locations for Los Angeles County

3.2 Frequency Curves and HSPF Data Comparison

The 100-yr peak discharge data presented in Appendix B was used to calibrate the design storm HSPF model. Table 3-1 compares the HSPF model results with the FFA 100-yr peak discharge results of the four Los Angeles County gages. The table shows that the HSPF model results are within 9% or less of the FFA results.

Table 3-1. HSPF and FFA 100-Yr Flow Comparison for Los Angeles County

HSPF Reach Number	Location	SCR HSPF Results (cfs)	SCR FFA Results (cfs)	Percent Diff. (FFA vs HSPF)
23	Aliso Creek at Blum Ranch	4,680	4,720	0.8%
70	SCR at Lang Railroad Bridge	21,340	19,600	-8.9%
180	SCR at Interstate 5	52,860	52,300	-1.1%
320	SCR County Line Gage	66,260	66,600	0.5%

Average discharge frequency multipliers were developed from the Los Angeles County stream gages to provide other frequency peak flows from the calibrated HSPF 100-yr model. Table 2-2 summarizes the ratios developed to convert 100-yr peak discharges to other recurrence intervals.

Table 3-2. Discharge Frequency Multipliers for Los Angeles County

Frequency	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	200-yr	500-yr
Frequency Multiplier	0.035	0.117	0.221	0.435	0.675	1.000	1.434	2.218

The frequency curves show good correlation between the gages with the exception of Lang Railroad Station. The results from Lang Railroad Station were disregarded in determining the discharge frequency multipliers due to inconsistent discharge results.

Figure 3-2 shows the frequency curves from Appendix B plotted against the HSPF model results using the discharge frequency multipliers.

Figure 3-2. Gage Frequency Curves and HSPF Design Storm Peaks

3.3 MAINSTEM PEAK FLOW MODELING

The HSPF report did not provide any design peak flow data for the Santa Clara River Mainstem. Table 3-3 summarizes the Mainstem 100-yr peak flows.

Table 3-3. Mainstem 100-Yr Peak Flows for Los Angeles County

HSPF		SCR HSPF	SCR FFA	
Reach		Results	Results	Percent Diff.
Number	Mainstem Location	(cfs)	(cfs)	(FFA vs HSPF)
20	SCR downstream Soledad Cyn	3,210	NA	NA
20	SCR downstream Trade Post and Aliso Cyn	8,080	NA	NA
30	SCR downstream Acton Cyn 2B	11,990	NA	NA
40	SCR	12,660	NA	NA
50	SCR	15,650	NA	NA
60	SCR upstream Agua Dulce Cyn	17,200	NA	NA
60	SCR downstream Agua Dulce Cyn	20,210	NA	NA
70	SCR at Lang Railroad Bridge	21,340	19,600	-8.9%
80	SCR downstream Tick Cyn	22,840	NA	NA
80	SCR downstream Oak Spring Cyn	23,970	NA	NA
80	SCR downstream Sand Cyn	25,830	NA	NA
90	SCR between Sand Cyn and Mint Cyn	25,810	NA	NA
100	SCR downstream Mint Cyn	29,620	NA	NA
110	SCR	29,390	NA	NA
120	SCR	28,140	NA	NA
130	SCR downstream Bouquet Cyn	36,620	NA	NA
150	SCR downstream South Fork	44,680	NA	NA
180	SCR at Interstate 5	52,860	52,300	-1.1%
190	SCR upstream Lower Castaic Ck	51,730	NA	NA
300	SCR upstream San Martinez Chiquito Cyn	64,280	NA	NA
310	SCR upstream San Martinez Grande Cyn	64,540	NA	NA
320	SCR County Line Gage	66,260	66,600	0.5%

3.4 DESIGN STORM PEAK SUMMARY TABLE

Table 3-4 shows the design storm peak flows for use in the hydraulic modeling, including any intermediate discharges calculated with the USGS regression equation discussed previously in Section 1.3 (name shown in red). The discharge frequency multipliers from Table 3-2 have been used to convert 100-yr peak discharges to other recurrence intervals.

Table 3-4. Design Storm Peak Flow Results for Los Angeles County

			Discharge (cfs) 0.035							
HSPF Sub-		Cumulative Drainage	0.035	0.117	0.221	0.435	0.675	1.000	1.434	2.218
Area	Name	Area (sq.mi)	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	200-yr	500-yr
10	Kentucky Springs Cyn	7.74	30	120	220	430	670	990	1,420	2,200
11	Soledad Canyon (Intermediate Rch 1)	4.09	40	130	250	500	780	1,150	1,650	2,550
11	Soledad Canyon	9.03	80	260	490	970	1,500	2,220	3,180	4,920
12	Trade Post (Intermediate Rch 1)	0.79	10	40	70	130	210	310	440	690
12	Trade Post	2.97	30	110	210	400	630	930	1,330	2,060
19	Acton Canyon (A) (Intermediate Rch 1)	1.76	20	60	110	220	340	510	730	1,130
19	Acton Canyon (A) (Intermediate Rch 2)	3.50	30	110	200	400	610	910	1,300	2,020
19	Acton Canyon (A)	4.62	40	130	250	500	770	1,140	1,630	2,530
20	SCR upstream Soledad Cyn	-	30	120	220	430	670	990	1,420	2,200
20	SCR downstream Soledad Cyn	-	110	380	710	1,400	2,170	3,210	4,600	7,120
20	SCR upstream Trade Post and Aliso Cyn	20.28	100	350	650	1,290	2,000	2,960	4,240	6,570
20	SCR downstream Trade Post and Aliso Cyn	49.84	280	950	1,790	3,510	5,450	8,080	11,590	17,920
22	Aliso Canyon	17.87	150	490	930	1,830	2,840	4,210	6,040	9,340
23	Aliso Canyon (Intermediate Rch 1)	23.79	150	500	940	1,860	2,880	4,270	6,120	9,470
23	Aliso Canyon	26.59	160	550	1,030	2,040	3,160	4,680	6,710	10,380
24	Red Rover Mine (Intermediate Rch 1)	0.75	10	30	60	120	180	270	390	600
24	Red Rover Mine	2.40	30	80	160	310	490	720	1,030	1,600
25	Escondido Creek (Intermediate Rch 1)	1.55	10	50	90	180	280	410	590	910
25	Escondido Creek (Intermediate Rch 2)	4.04	30	110	200	400	610	910	1,300	2,020
25	Escondido Creek	6.84	50	160	310	610	950	1,410	2,020	3,130
26	Escondido Creek (Intermediate Rch 1)	10.77	70	240	450	890	1,380	2,050	2,940	4,550
26	Escondido Creek	12.98	80	280	530	1,040	1,610	2,390	3,430	5,300
27	Acton Canyon 2B (Intermediate Rch 1)	1.04	10	30	50	100	160	230	330	510
27	Acton Canyon 2B (Intermediate Rch 2)	1.56	10	40	70	140	220	320	460	710
27	Acton Canyon 2B	1.82	10	40	80	160	240	360	520	800

28 Action Carryon 2B	00	Aster Osman OD	7.54	00	000	070	700	4.400	4.070	0.000	0.700
30 SCR upstream Acton Cyn 2B - 280 950 1,790 3,510 5,450 8,080 11,590 17,920 30 SCR downstream Acton Cyn 2B - 420 1,400 2,650 5,220 8,090 11,590 17,190 26,590 30 SCR 84,99 340 1,120 2,120 4,170 6,470 9,580 13,740 21,250 40 SCR 99.09 440 1,480 2,800 5,510 8,550 12,660 18,150 28,080 50 SCR 106.06 550 1,830 3,60 6,810 10,560 15,550 22,440 34,710 60 SCR upstream Agua Dulce Cyn 149.71 710 2,380 4,470 8,790 13,640 20,210 28,980 44,830 62 Agua Dulce Canyon (Intermediate Rch 1) 8,30 40 130 250 500 780 1,150 1,660 2,550 62 Agua Dulce Canyon (Intermediate Rch 2)	28	Acton Canyon 2B	7.51	60	200	370	730	1,130	1,670	2,390	3,700
30 SCR downstream Acton Cyn 2B - 420 1,400 2,650 5,220 8,090 11,990 17,190 26,590 30 SCR 84.99 340 1,120 2,120 4,170 6,470 9,580 13,740 21,250 40 SCR 99.09 440 1,480 2,800 5,510 8,550 12,660 18,150 22,840 50 SCR 106.06 550 1,830 3,460 7,480 11,610 17,200 24,660 38,150 60 SCR downstream Agua Dulce Cyn 149,71 710 2,360 4,470 8,790 13,640 20,210 28,980 44,830 62 Agua Dulce Canyon (Intermediate Rch 1) 8,30 40 130 250 500 780 1,150 1,560 2,550 62 Agua Dulce Canyon (Intermediate Rch 2) 10.03 50 160 300 580 900 1,340 1,920 2,550 62 Agua Dulce Canyon (Intermediate R		•	20.86	_			-	•	*		
30 SCR 84.99 340 1,120 2,120 4,170 6,470 9,580 13,740 21,250 40 SCR 99.09 440 1,480 2,800 5,510 8,550 12,660 18,150 28,080 50 SCR 106.06 550 1,830 3,460 6,810 10,560 15,650 22,440 34,710 60 SCR upstream Agua Dulce Cyn 120,19 600 2,010 3,800 7,480 11,610 17,200 24,660 38,150 60 SCR downstream Agua Dulce Cyn 149,71 710 2,360 4,470 8,790 13,640 20,210 28,980 44,830 62 Agua Dulce Canyon (Intermediate Rch 1) 8,30 40 130 550 500 780 1,150 1,550 2,550 62 Agua Dulce Canyon (Intermediate Rch 2) 10,03 50 160 20 400 780 1,20 1,800 2,580 3,990 63 Agua D	30	· · · · · · · · · · · · · · · · · · ·	-	280	950	1,790	3,510	5,450	8,080	11,590	17,920
40 SCR 99.09 440 1,480 2,800 5,510 8,550 12,660 18,150 28,080 50 SCR 106.06 550 1,830 3,460 6,810 10,560 15,650 22,440 34,710 60 SCR upstream Agua Dulce Cyn 120.19 600 2,010 3,800 7,480 11,610 17,200 24,660 38,150 60 SCR downstream Agua Dulce Cyn 149,71 710 2,360 4,470 8,790 13,640 20,210 28,980 44,830 62 Agua Dulce Canyon (Intermediate Rch 1) 8,30 40 130 250 550 780 1,150 1,650 2,550 62 Agua Dulce Canyon (Intermediate Rch 2) 10,03 50 160 300 580 900 1,340 1,920 2,970 62 Agua Dulce Canyon (Intermediate Rch 2) 10,03 50 160 300 780 1,20 1,800 2,500 3,930 63 Ag	30	SCR downstream Acton Cyn 2B	-	420	1,400	2,650	5,220	8,090	11,990	17,190	26,590
50 SCR 106.06 550 1,830 3,460 6,810 10,560 12,650 22,440 34,710 60 SCR upstream Agua Dulce Cyn 120.19 600 2,010 3,800 7,480 11,610 17,200 24,660 38,150 60 SCR downstream Agua Dulce Cyn 149,71 710 2,360 4,470 8,790 13,640 20,210 28,980 44,830 62 Agua Dulce Canyon (Intermediate Rch 1) 8,30 40 130 250 500 780 1,150 1,650 2,550 62 Agua Dulce Canyon (Intermediate Rch 2) 10,03 50 160 300 580 900 1,340 1,920 2,970 62 Agua Dulce Canyon (Intermediate Rch 2) 14,27 60 210 300 770 1,190 1,770 2,540 3,930 63 Agua Dulce Canyon (Intermediate Rch 2) 28,45 100 340 650 1,270 1,970 1,920 4,190 6,480	30	SCR	84.99	340	1,120	2,120	4,170	6,470	9,580	13,740	21,250
60 SCR upstream Agua Dulce Cyn 120.19 600 2,010 3,800 7,480 11,610 17,200 24,660 38,150 60 SCR downstream Agua Dulce Cyn 149,71 710 2,360 4,470 8,790 13,640 20,210 28,980 44,830 62 Agua Dulce Canyon (Intermediate Rch 1) 8,30 40 130 250 500 780 1,150 1,650 2,550 62 Agua Dulce Canyon (Intermediate Rch 2) 10,03 50 160 300 580 900 1,340 1,920 2,970 62 Agua Dulce Canyon (Intermediate Rch 2) 14,27 60 210 400 780 1,220 1,900 2,580 3,990 63 Agua Dulce Canyon (Intermediate Rch 2) 28,45 100 340 650 1,270 1,190 1,770 2,540 3,930 63 Agua Dulce Canyon (Intermediate Rch 2) 28,45 100 340 650 1,270 1,970 2,920 4,190 6,680 <td>40</td> <td>SCR</td> <td>99.09</td> <td>440</td> <td>1,480</td> <td>2,800</td> <td>5,510</td> <td>8,550</td> <td>12,660</td> <td>18,150</td> <td>28,080</td>	40	SCR	99.09	440	1,480	2,800	5,510	8,550	12,660	18,150	28,080
60 SCR downstream Agua Dulce Cyn 149.71 710 2.360 4.470 8.790 13,640 20,210 28,980 44,830 62 Agua Dulce Canyon (Intermediate Rch 1) 8.30 40 130 250 500 780 1,150 1,650 2,550 62 Agua Dulce Canyon (Intermediate Rch 2) 10.03 50 160 300 580 900 1,340 1,920 2,970 62 Agua Dulce Canyon (Intermediate Rch 2) 14.27 60 210 400 780 1,220 1,800 2,580 3,990 63 Agua Dulce Canyon (Intermediate Rch 1) 15.60 60 210 390 770 1,190 1,770 2,540 3,990 63 Agua Dulce Canyon (Intermediate Rch 2) 28.45 100 340 650 1,270 1,970 2,920 4,190 6,880 63 Agua Dulce Canyon (Intermediate Rch 2) 28.45 100 340 650 1,270 1,970 2,920 4,190 6,680	50	SCR	106.06	550	1,830	3,460	6,810	10,560	15,650	22,440	34,710
62 Agua Dulce Canyon (Intermediate Rch 1) 8.30 40 130 250 500 780 1,150 1,650 2,550 62 Agua Dulce Canyon (Intermediate Rch 2) 10.03 50 160 300 580 900 1,340 1,920 2,970 62 Agua Dulce Canyon (Intermediate Rch 2) 14.27 60 210 400 780 1,220 1,800 2,580 3,990 63 Agua Dulce Canyon (Intermediate Rch 1) 15.60 60 210 390 770 1,190 1,770 2,540 3,930 63 Agua Dulce Canyon (Intermediate Rch 2) 28.45 100 340 650 1,270 1,970 2,920 4,190 6,480 63 Agua Dulce Canyon (Intermediate Rch 2) 28.45 100 340 650 1,270 1,970 2,920 4,190 6,480 63 Agua Dulce Canyon (Intermediate Rch 2) 28.45 100 340 650 1,270 1,920 4,190 6,480	60	SCR upstream Agua Dulce Cyn	120.19	600	2,010	3,800	7,480	11,610	17,200	24,660	38,150
62 Agua Dulce Caryon (Intermediate Rch 2) 10.03 50 160 300 580 900 1,340 1,920 2,970 62 Agua Dulce Caryon 14.27 60 210 400 780 1,220 1,800 2,580 3,990 63 Agua Dulce Caryon (Intermediate Rch 1) 15.60 60 210 390 770 1,190 1,770 2,540 3,930 63 Agua Dulce Caryon (Intermediate Rch 2) 28.45 100 340 650 1,270 1,970 2,920 4,190 6,480 63 Agua Dulce Caryon (Intermediate Rch 2) 28.45 100 340 650 1,270 1,970 2,920 4,190 6,480 63 Agua Dulce Caryon (Intermediate Rch 2) 28.45 100 340 650 1,270 1,970 2,920 4,190 6,480 63 Agua Dulce Caryon (Intermediate Rch 2) 28.45 100 340 650 1,270 1,940 2,920 4,190 6,480	60	SCR downstream Agua Dulce Cyn	149.71	710	2,360	4,470	8,790	13,640	20,210	28,980	44,830
62 Agua Dulce Canyon 14.27 60 210 400 780 1,220 1,800 2,580 3,990 63 Agua Dulce Canyon (Intermediate Rch 1) 15.60 60 210 390 770 1,190 1,770 2,540 3,930 63 Agua Dulce Canyon (Intermediate Rch 2) 28.45 100 340 650 1,270 1,970 2,920 4,190 6,480 63 Agua Dulce Canyon (Intermediate Rch 2) 28.45 100 340 650 1,270 1,970 2,920 4,190 6,480 63 Agua Dulce Canyon 29.52 110 350 670 1,310 2,030 3,010 4,320 6,680 70 SCR Nr Lang Railroad Bridge 157.10 750 2,500 4,720 9,280 14,400 21,340 30,600 47,330 80 SCR upstream Tick Canyon - 750 2,500 4,720 9,280 14,400 21,340 30,600 47,330 80	62	Agua Dulce Canyon (Intermediate Rch 1)	8.30	40	130	250	500	780	1,150	1,650	2,550
63 Agua Dulce Canyon (Intermediate Rch 1) 15.60 60 210 390 770 1,190 1,770 2,540 3,930 63 Agua Dulce Canyon (Intermediate Rch 2) 28.45 100 340 650 1,270 1,970 2,920 4,190 6,480 63 Agua Dulce Canyon 29.52 110 350 670 1,310 2,030 3,010 4,320 6,680 70 SCR Nr Lang Railroad Bridge 157.10 750 2,500 4,720 9,280 14,400 21,340 30,600 47,330 80 SCR - 750 2,500 4,720 9,280 14,400 21,340 30,600 47,330 80 SCR upstream Tick Canyon - 750 2,500 4,720 9,280 14,400 21,340 30,600 47,330 80 SCR upstream Tick Canyon - 800 2,670 5,050 9,940 15,420 22,840 32,750 50,660 80 SCR upst	62	Agua Dulce Canyon (Intermediate Rch 2)	10.03	50	160	300	580	900	1,340	1,920	2,970
63 Agua Dulce Caryon (Intermediate Rch 2) 28.45 100 340 650 1,270 1,970 2,920 4,190 6,480 63 Agua Dulce Caryon 29.52 110 350 670 1,310 2,030 3,010 4,320 6,680 70 SCR Nr Lang Railroad Bridge 157.10 750 2,500 4,720 9,280 14,400 21,340 30,600 47,330 80 SCR - 750 2,500 4,720 9,280 14,400 21,340 30,600 47,330 80 SCR upstream Tick Caryon - 750 2,500 4,720 9,280 14,400 21,340 30,600 47,330 80 SCR upstream Tick Caryon - 800 2,670 5,050 9,940 15,420 22,840 32,750 50,660 80 SCR upstream Oak Spring Caryon - 800 2,670 5,050 9,940 15,420 22,840 32,750 50,660 80 SCR downs	62	Agua Dulce Canyon	14.27	60	210	400	780	1,220	1,800	2,580	3,990
63 Agua Dulce Canyon 29.52 110 350 670 1,310 2,030 3,010 4,320 6,680 70 SCR Nr Lang Railroad Bridge 157.10 750 2,500 4,720 9,280 14,400 21,340 30,600 47,330 80 SCR - 750 2,500 4,720 9,280 14,400 21,340 30,600 47,330 80 SCR upstream Tick Canyon - 750 2,500 4,720 9,280 14,400 21,340 30,600 47,330 80 SCR downstream Tick Canyon - 800 2,670 5,050 9,940 15,420 22,840 32,750 50,660 80 SCR upstream Oak Spring Canyon - 800 2,670 5,050 9,940 15,420 22,840 32,750 50,660 80 SCR downstream Oak Spring Canyon - 840 2,800 5,300 10,430 16,180 23,970 34,370 53,170 80 SCR down	63	Agua Dulce Canyon (Intermediate Rch 1)	15.60	60	210	390	770	1,190	1,770	2,540	3,930
70 SCR Nr Lang Railroad Bridge 157.10 750 2,500 4,720 9,280 14,400 21,340 30,600 47,330 80 SCR - 750 2,500 4,720 9,280 14,400 21,340 30,600 47,330 80 SCR upstream Tick Canyon - 750 2,500 4,720 9,280 14,400 21,340 30,600 47,330 80 SCR upstream Tick Canyon - 750 2,500 4,720 9,280 14,400 21,340 30,600 47,330 80 SCR downstream Tick Canyon - 800 2,670 5,050 9,940 15,420 22,840 32,750 50,660 80 SCR downstream Oak Spring Canyon - 840 2,800 5,300 10,430 16,180 23,970 34,370 53,170 80 SCR upstream Sand Canyon 179,58 840 2,800 5,300 10,430 16,180 23,970 34,370 53,170 80 <	63	Agua Dulce Canyon (Intermediate Rch 2)	28.45	100	340	650	1,270	1,970	2,920	4,190	6,480
80 SCR - 750 2,500 4,720 9,280 14,400 21,340 30,600 47,330 80 SCR upstream Tick Canyon - 750 2,500 4,720 9,280 14,400 21,340 30,600 47,330 80 SCR downstream Tick Canyon - 800 2,670 5,050 9,940 15,420 22,840 32,750 50,660 80 SCR upstream Oak Spring Canyon - 800 2,670 5,050 9,940 15,420 22,840 32,750 50,660 80 SCR downstream Oak Spring Canyon - 840 2,800 5,300 10,430 16,180 23,970 34,370 53,170 80 SCR upstream Sand Canyon 179,58 840 2,800 5,300 10,430 16,180 23,970 34,370 53,170 80 SCR downstream Sand Canyon 192,33 900 3,020 5,710 11,240 17,440 25,830 37,040 57,290 81	63	Agua Dulce Canyon	29.52	110	350	670	1,310	2,030	3,010	4,320	6,680
80 SCR upstream Tick Canyon - 750 2,500 4,720 9,280 14,400 21,340 30,600 47,330 80 SCR downstream Tick Canyon - 800 2,670 5,050 9,940 15,420 22,840 32,750 50,660 80 SCR upstream Oak Spring Canyon - 800 2,670 5,050 9,940 15,420 22,840 32,750 50,660 80 SCR downstream Oak Spring Canyon - 840 2,800 5,300 10,430 16,180 23,970 34,370 53,170 80 SCR upstream Sand Canyon 179,58 840 2,800 5,300 10,430 16,180 23,970 34,370 53,170 80 SCR downstream Sand Canyon 192,33 900 3,020 5,710 11,240 17,440 25,830 37,040 57,290 81 Sand Canyon 6.34 200 660 1,240 2,440 3,790 5,610 8,040 12,440 82 <td>70</td> <td>SCR Nr Lang Railroad Bridge</td> <td>157.10</td> <td>750</td> <td>2,500</td> <td>4,720</td> <td>9,280</td> <td>14,400</td> <td>21,340</td> <td>30,600</td> <td>47,330</td>	70	SCR Nr Lang Railroad Bridge	157.10	750	2,500	4,720	9,280	14,400	21,340	30,600	47,330
80 SCR downstream Tick Canyon - 800 2,670 5,050 9,940 15,420 22,840 32,750 50,660 80 SCR upstream Oak Spring Canyon - 800 2,670 5,050 9,940 15,420 22,840 32,750 50,660 80 SCR downstream Oak Spring Canyon - 840 2,800 5,300 10,430 16,180 23,970 34,370 53,170 80 SCR upstream Sand Canyon 179.58 840 2,800 5,300 10,430 16,180 23,970 34,370 53,170 80 SCR downstream Sand Canyon 179.58 840 2,800 5,300 10,430 16,180 23,970 34,370 53,170 80 SCR downstream Sand Canyon 192.33 900 3,020 5,710 11,240 17,440 25,830 37,040 57,290 81 Sand Canyon 6.34 200 660 1,240 2,440 3,790 5,610 8,040 1,640 <t< td=""><td>80</td><td>SCR</td><td>-</td><td>750</td><td>2,500</td><td>4,720</td><td>9,280</td><td>14,400</td><td>21,340</td><td>30,600</td><td>47,330</td></t<>	80	SCR	-	750	2,500	4,720	9,280	14,400	21,340	30,600	47,330
80 SCR upstream Oak Spring Canyon - 800 2,670 5,050 9,940 15,420 22,840 32,750 50,660 80 SCR downstream Oak Spring Canyon - 840 2,800 5,300 10,430 16,180 23,970 34,370 53,170 80 SCR upstream Sand Canyon 179.58 840 2,800 5,300 10,430 16,180 23,970 34,370 53,170 80 SCR downstream Sand Canyon 192.33 900 3,020 5,710 11,240 17,440 25,830 37,040 57,290 81 Sand Canyon 6.34 200 660 1,240 2,440 3,790 5,610 8,040 12,440 82 Iron Canyon (Intermediate Rch 1) 2.17 30 90 160 320 500 740 1,060 1,640 82 Iron Canyon 2.96 30 110 210 410 640 950 1,360 2,110 84 Sand Canyon (Inte	80	SCR upstream Tick Canyon	-	750	2,500	4,720	9,280	14,400	21,340	30,600	47,330
80 SCR downstream Oak Spring Canyon - 840 2,800 5,300 10,430 16,180 23,970 34,370 53,170 80 SCR upstream Sand Canyon 179,58 840 2,800 5,300 10,430 16,180 23,970 34,370 53,170 80 SCR downstream Sand Canyon 192,33 900 3,020 5,710 11,240 17,440 25,830 37,040 57,290 81 Sand Canyon 6.34 200 660 1,240 2,440 3,790 5,610 8,040 12,440 82 Iron Canyon (Intermediate Rch 1) 2.17 30 90 160 320 500 740 1,060 1,640 82 Iron Canyon 2.96 30 110 210 410 640 950 1,360 2,110 84 Sand Canyon upstream Iron Canyon 6.34 200 660 1,240 2,440 3,790 5,610 8,040 12,440 84 Sand Canyon	80	SCR downstream Tick Canyon	-	800	2,670	5,050	9,940	15,420	22,840	32,750	50,660
80 SCR upstream Sand Canyon 179.58 840 2,800 5,300 10,430 16,180 23,970 34,370 53,170 80 SCR downstream Sand Canyon 192.33 900 3,020 5,710 11,240 17,440 25,830 37,040 57,290 81 Sand Canyon 6.34 200 660 1,240 2,440 3,790 5,610 8,040 12,440 82 Iron Canyon (Intermediate Rch 1) 2.17 30 90 160 320 500 740 1,060 1,640 82 Iron Canyon 2.96 30 110 210 410 640 950 1,360 2,110 84 Sand Canyon upstream Iron Canyon 6.34 200 660 1,240 2,440 3,790 5,610 8,040 12,440 84 Sand Canyon (Intermediate Rch 1) 11.31 250 840 1,590 3,130 4,850 7,190 10,310 15,950 84 Sand Canyon	80	SCR upstream Oak Spring Canyon	-	800	2,670	5,050	9,940	15,420	22,840	32,750	50,660
80 SCR downstream Sand Canyon 192.33 900 3,020 5,710 11,240 17,440 25,830 37,040 57,290 81 Sand Canyon 6.34 200 660 1,240 2,440 3,790 5,610 8,040 12,440 82 Iron Canyon (Intermediate Rch 1) 2.17 30 90 160 320 500 740 1,060 1,640 82 Iron Canyon 2.96 30 110 210 410 640 950 1,360 2,110 84 Sand Canyon upstream Iron Canyon 6.34 200 660 1,240 2,440 3,790 5,610 8,040 12,440 84 Sand Canyon (Intermediate Rch 1) 11.31 250 840 1,590 3,130 4,850 7,190 10,310 15,950 84 Sand Canyon 12.75 280 930 1,750 3,450 5,360 7,940 11,390 17,610	80	SCR downstream Oak Spring Canyon	-	840	2,800	5,300	10,430	16,180	23,970	34,370	53,170
81 Sand Canyon 6.34 200 660 1,240 2,440 3,790 5,610 8,040 12,440 82 Iron Canyon (Intermediate Rch 1) 2.17 30 90 160 320 500 740 1,060 1,640 82 Iron Canyon 2.96 30 110 210 410 640 950 1,360 2,110 84 Sand Canyon upstream Iron Canyon 6.34 200 660 1,240 2,440 3,790 5,610 8,040 12,440 84 Sand Canyon (Intermediate Rch 1) 11.31 250 840 1,590 3,130 4,850 7,190 10,310 15,950 84 Sand Canyon 12.75 280 930 1,750 3,450 5,360 7,940 11,390 17,610	80	SCR upstream Sand Canyon	179.58	840	2,800	5,300	10,430	16,180	23,970	34,370	53,170
82 Iron Canyon (Intermediate Rch 1) 2.17 30 90 160 320 500 740 1,060 1,640 82 Iron Canyon 2.96 30 110 210 410 640 950 1,360 2,110 84 Sand Canyon upstream Iron Canyon 6.34 200 660 1,240 2,440 3,790 5,610 8,040 12,440 84 Sand Canyon (Intermediate Rch 1) 11.31 250 840 1,590 3,130 4,850 7,190 10,310 15,950 84 Sand Canyon 12.75 280 930 1,750 3,450 5,360 7,940 11,390 17,610	80	SCR downstream Sand Canyon	192.33	900	3,020	5,710	11,240	17,440	25,830	37,040	57,290
82 Iron Canyon 2.96 30 110 210 410 640 950 1,360 2,110 84 Sand Canyon upstream Iron Canyon 6.34 200 660 1,240 2,440 3,790 5,610 8,040 12,440 84 Sand Canyon (Intermediate Rch 1) 11.31 250 840 1,590 3,130 4,850 7,190 10,310 15,950 84 Sand Canyon 12.75 280 930 1,750 3,450 5,360 7,940 11,390 17,610	81	Sand Canyon	6.34	200	660	1,240	2,440	3,790	5,610	8,040	12,440
84 Sand Canyon upstream Iron Canyon 6.34 200 660 1,240 2,440 3,790 5,610 8,040 12,440 84 Sand Canyon (Intermediate Rch 1) 11.31 250 840 1,590 3,130 4,850 7,190 10,310 15,950 84 Sand Canyon 12.75 280 930 1,750 3,450 5,360 7,940 11,390 17,610	82	Iron Canyon (Intermediate Rch 1)	2.17	30	90	160	320	500	740	1,060	1,640
84 Sand Canyon (Intermediate Rch 1) 11.31 250 840 1,590 3,130 4,850 7,190 10,310 15,950 84 Sand Canyon 12.75 280 930 1,750 3,450 5,360 7,940 11,390 17,610	82	Iron Canyon	2.96	30	110	210	410	640	950	1,360	2,110
84 Sand Canyon 12.75 280 930 1,750 3,450 5,360 7,940 11,390 17,610	84	Sand Canyon upstream Iron Canyon	6.34	200	660	1,240	2,440	3,790	5,610	8,040	12,440
	84	Sand Canyon (Intermediate Rch 1)	11.31	250	840	1,590	3,130	4,850	7,190	10,310	15,950
85 Oak Spring Canyon 6.43 40 130 250 500 770 1,140 1,630 2,530	84	Sand Canyon	12.75	280	930	1,750	3,450	5,360	7,940	11,390	17,610
	85	Oak Spring Canyon	6.43	40	130	250	500	770	1,140	1,630	2,530

86	Tick Canyon (Intermediate Rch 1)	4.57	50	170	320	620	970	1,430	2,050	3,170
86	Tick Canyon	5.67	60	200	380	740	1,150	1,710	2,450	3,790
90	SCR between Sand Cyn and Mint Cyn	195.09	900	3,020	5,700	11,230	17,420	25,810	37,010	57,250
100	SCR upstream Mint Canyon	195.75	890	2,980	5,630	11,090	17,210	25,490	36,550	56,540
100	SCR downstream Mint Canyon	227.30	1,040	3,470	6,550	12,880	19,990	29,620	42,480	65,700
101	Mint Canyon	16.83	130	450	850	1,670	2,590	3,840	5,510	8,520
102	Mint Canyon	18.70	150	510	970	1,900	2,950	4,370	6,270	9,690
102	Mint Canyon	21.44	150	510	970	1,900	2,950	4,370	6,270	9,690
102	Mint Canyon	22.20	150	510	970	1,900	2,950	4,370	6,270	9,690
102	Mint Canyon	27.26	150	510	970	1,900	2,950	4,370	6,270	9,690
103	Mint Canyon	28.67	150	500	940	1,850	2,880	4,260	6,110	9,450
103	Mint Canyon	29.37	150	500	940	1,850	2,880	4,260	6,110	9,450
110	SCR	229.59	1,030	3,440	6,500	12,780	19,840	29,390	42,150	65,190
120	SCR	234.04	980	3,290	6,220	12,240	18,990	28,140	40,350	62,410
121	Texas Canyon	10.99	120	410	780	1,530	2,380	3,520	5,050	7,810
122	Vasquez Canyon (Intermediate Rch 1)	3.29	40	130	250	490	760	1,120	1,610	2,480
122	Vasquez Canyon	4.39	50	170	310	620	960	1,420	2,040	3,150
123	Plum Canyon	3.17	40	130	240	470	730	1,080	1,550	2,400
130	SCR upstream Bouquet Cyn	239.05	950	3,180	6,000	11,810	18,330	27,160	38,950	60,240
130	SCR downstream Bouquet Cyn	311.23	1,280	4,280	8,090	15,930	24,720	36,620	52,510	81,220
133	Bouquet Cyn (Intermediate Rch 1)	22.26	140	450	860	1,680	2,610	3,870	5,550	8,580
133	Bouquet Cyn	24.44	150	490	920	1,820	2,820	4,180	5,990	9,270
134	Bouquet Cyn upstream Vasquez Cyn	35.43	270	900	1,700	3,340	5,180	7,680	11,010	17,030
134	Bouquet Cyn (Intermediate Rch 1)	43.50	280	940	1,770	3,480	5,400	8,000	11,470	17,740
134	Bouquet Cyn	45.16	290	970	1,820	3,590	5,570	8,250	11,830	18,300
138	Bouquet Cyn upstream Plum Cyn	46.30	300	1,000	1,880	3,700	5,740	8,510	12,200	18,880
138	Bouquet Cyn	50.71	330	1,090	2,060	4,050	6,280	9,310	13,350	20,650
139	Bouquet Cyn upstream Haskell Cyn	50.86	330	1,090	2,060	4,060	6,300	9,340	13,390	20,720
142	Haskell Canyon (Intermediate Rch 1)	8.84	110	360	680	1,330	2,070	3,060	4,390	6,790
142	Haskell Canyon	9.76	120	390	730	1,440	2,240	3,320	4,760	7,360

		1	1					1	1	1
143	Bouquet Cyn (Intermediate Rch 1)	61.39	480	1,610	3,030	5,970	9,270	13,730	19,690	30,450
143	Bouquet Cyn upstream Dry Cyn	60.62	440	1,460	2,750	5,410	8,400	12,440	17,840	27,590
143	Bouquet Cyn	72.18	550	1,840	3,470	6,830	10,600	15,700	22,510	34,820
146	Dry Canyon (Intermediate Rch 1)	7.25	90	290	550	1,070	1,670	2,470	3,540	5,480
146	Dry Canyon	8.44	100	330	620	1,220	1,890	2,800	4,020	6,210
147	Dry Canyon	9.48	110	370	700	1,380	2,140	3,170	4,550	7,030
148	Towsley Canyon	5.83	100	330	630	1,230	1,910	2,830	4,060	6,280
149	Lyon Canyon	1.50	20	80	150	300	470	690	990	1,530
150	SCR upstream South Fork SCR	311.96	1,280	4,280	8,090	15,930	24,720	36,620	52,510	81,220
150	SCR downstream South Fork SCR	357.26	1,560	5,230	9,870	19,440	30,160	44,680	64,070	99,100
153	South Fork SCR upstream Towsley Cyn	4.19	140	480	900	1,770	2,740	4,060	5,820	9,010
153	South Fork SCR upstream Lyon Cyn	11.37	170	580	1,100	2,160	3,350	4,960	7,110	11,000
154	South Fork SCR	14.14	190	630	1,190	2,350	3,650	5,400	7,740	11,980
156	Pico Canyon (Intermediate Rch 1)	3.33	40	120	230	450	700	1,040	1,490	2,310
156	Pico Canyon (Intermediate Rch 2)	6.34	60	210	390	770	1,190	1,770	2,540	3,930
156	Pico Canyon	6.93	70	220	420	830	1,290	1,910	2,740	4,240
159	South Fork SCR	23.37	290	990	1,860	3,660	5,680	8,420	12,070	18,680
161	Newhall Creek (Intermediate Rch 1)	5.70	30	110	210	420	650	970	1,390	2,150
161	Newhall Creek (Intermediate Rch 2)	7.65	40	150	270	540	840	1,240	1,780	2,750
161	Newhall Creek	17.72	90	290	550	1,080	1,670	2,480	3,560	5,500
164	Placerita Ck (Intermediate Rch 1)	6.79	60	210	390	770	1,190	1,770	2,540	3,930
164	Placerita Ck (Intermediate Rch 2)	8.87	80	260	490	960	1,490	2,210	3,170	4,900
164	Placerita Ck	9.53	80	270	520	1,020	1,580	2,340	3,360	5,190
168	South Fork SCR	43.86	370	1,240	2,340	4,620	7,160	10,610	15,210	23,530
169	South Fork SCR	45.30	380	1,270	2,400	4,720	7,320	10,840	15,540	24,040
170	SCR upstream San Francisquito Cyn	-	1,560	5,230	9,870	19,440	30,160	44,680	64,070	99,100
170	SCR downstream San Francisquito Cyn	409.29	1,880	6,300	11,890	23,410	36,320	53,810	77,160	119,350
173	San Francisquito Cyn	39.79	500	1,680	3,170	6,250	9,690	14,360	20,590	31,850
174	San Francisquito Cyn	-	480	1,600	3,020	5,940	9,210	13,650	19,570	30,280
174	San Francisquito Cyn	43.19	480	1,600	3,020	5,940	9,210	13,650	19,570	30,280

	2 5 1 1 2	1		4 000					40.000	
175	San Francisquito Cyn	-	490	1,620	3,060	6,030	9,360	13,860	19,880	30,740
175	San Francisquito Cyn	49.08	490	1,620	3,060	6,030	9,360	13,860	19,880	30,740
180	SCR at Interstate 5	410.62	1,850	6,180	11,680	22,990	35,680	52,860	75,800	117,240
190	SCR upstream Lion Cyn	419.23	1,810	6,050	11,420	22,480	34,880	51,680	74,110	114,630
190	SCR upstream Lower Castaic Creek	420.02	1,810	6,050	11,430	22,500	34,920	51,730	74,180	114,740
191	Lion Canyon	0.79	10	20	50	90	140	210	300	470
198	Violin Canyon	5.91	70	230	440	860	1,340	1,980	2,840	4,390
199	Marple Cyn	2.40	30	110	200	400	610	910	1,300	2,020
218	Marple Cyn (Intermediate Rch 1)	9.26	120	400	760	1,490	2,320	3,430	4,920	7,610
218	Marple Cyn	10.50	130	450	840	1,660	2,570	3,810	5,460	8,450
219	Lower Castaic Creek	11.53	410	1,380	2,610	5,150	7,990	11,830	16,960	26,240
223	Lower Castaic Creek (Intermediate Rch 1)	28.72	490	1,650	3,120	6,150	9,540	14,130	20,260	31,340
223	Lower Castaic Creek	29.58	510	1,690	3,200	6,300	9,770	14,480	20,760	32,120
224	Lower Castaic Creek	31.57	510	1,700	3,220	6,330	9,830	14,560	20,880	32,290
227	Hasley Canyon (Intermediate Rch 1)	4.44	20	50	100	200	310	460	660	1,020
227	Hasley Canyon (Intermediate Rch 2)	7.20	20	80	150	300	470	690	990	1,530
227	Hasley Canyon	7.99	30	90	170	330	510	750	1,080	1,660
228	Lower Castaic Creek (Intermediate Rch 1)	40.98	470	1,570	2,970	5,850	9,080	13,450	19,290	29,830
228	Lower Castaic Creek	41.31	470	1,580	2,990	5,890	9,140	13,540	19,420	30,030
300	SCR upstream San Martinez Chiquito Cyn	620.26	2,250	7,520	14,210	27,960	43,390	64,280	92,180	142,570
301	San Martinez Chiquito Cyn	2.31	10	30	50	100	160	240	340	530
302	San Martinez Chiquito Cyn (Intermediate Rch 1)	3.57	10	40	80	160	240	360	520	800
302	San Martinez Chiquito Cyn (Intermediate Rch 2)	4.58	20	50	100	200	300	450	650	1,000
302	San Martinez Chiquito Cyn	4.99	20	60	110	210	320	480	690	1,060
303	Long Canyon	0.95	10	20	40	70	110	170	240	380
303	Long Canyon	1.54	10	30	60	110	180	260	370	580
310	SCR upstream San Martinez Grande Cyn	-	2,260	7,550	14,260	28,070	43,560	64,540	92,550	143,150
304	San Martinez Grande Cyn	3.22	80	270	510	1,000	1,560	2,310	3,310	5,120
310	SCR upstream Potrero Cyn	631.33	2,280	7,630	14,420	28,380	44,040	65,250	93,570	144,720
311	Potrero Cyn	1.95	10	40	80	170	260	380	540	840

312	Potrero Cyn (Intermediate Rch 1)	3.63	60	190	360	700	1,090	1,620	2,320	3,590
312	Potrero Cyn	4.49	70	230	430	840	1,300	1,930	2,770	4,280
320	SCR at County Line	638.96	2,320	7,750	14,640	28,820	44,730	66,260	95,020	146,960

Note (1): Calculated 100-yr Discharges for Intermediate Reaches Have Names in Red Font.

SECTION 4 REFERENCES

- AQUA TERRA, 2009. Hydrologic Modeling of the Santa Clara River Watershed with the U.S. EPA Hydrologic Simulation Program FORTRAN (HSPF). Revised Final Draft, December 2009.
- FEMA, 1997. Flood Insurance Study, Ventura County, California, Unincorporated Areas. Vol 1 of 2. Revised September 3, 1997. Community Number 060413.
- USACE, 2003. <u>Project Management Plan Feasibility Phase</u>. <u>Santa Clara River Watershed Los Angeles and Ventura County Feasibility Study</u>. Los Angeles District, South Pacific Division October 15, 2003.
- USGS, 1982. Guidelines for Determining Flood Flow Frequency. Bulletin #17B of the Hydrology Subcommittee. U.S. Department of the Interior, Geological Survey. March, 1982.
- USGS, 1993. Nationwide Summary of U.S. Geological Survey Regional Regression Equations for Estimating Magnitude and Frequency of Floods for Ungaged Sites. USGS WRI Report 94-0042.
- VCFCD, 1994. Santa Clara River 1994 Hydrology Study. Ventura County Public Works Agency. October 27, 1994.
- VCWPD, 2006. Santa Clara River 2006 Hydrology Update. Ventura County Watershed Protection District, Advanced Planning Section. December, 2006.

SECTION 5 APPENDIX A- VENTURA COUNTY FFA OUTPUT AND PROBABILITY PLOTS

5.1 HOPPER CREEK FFA

```
*********
                                                              **********
                     FFA
                                                           * U.S. ARMY CORPS OF ENGINEERS *

* THE HYDROLOGIC ENGINEERING CENTER *

* 609 SECOND STREET *

* DAVIS, CALIFORNIA 95616 *

* (916) 756-1104 *
        FLOOD FREQUENCY ANALYSIS *
PROGRAM DATE: FEB 1995 *
VERSION: 3.1 *
            VERSION: 3.1

UN DATE AND TIME: *

23 OCT 06 08:01:16 *
         RUN DATE AND TIME:
                                                                               (916) 756-1104
 *********
  INPUT FILE NAME: 701_USWP.DAT
 OUTPUT FILE NAME: 701_USWP.FFO
 **TITLE RECORD(S)**
 TT FLOOD FLOW FREQUENCY PROGRAM TEST 4-HOPPER CREEK NEAR PIRU MIX OF GS&WPD
 TT REGIONAL SKEW -.3 TO DUPLICATE C.O.E. RESULTS AND BULL 17B MAP
 **STATION IDENTIFICATION**
 ID 1105 HOPPER CREEK NEAR PIRU (V.C. #701) DA=23.6SQMI REC BEGAN:1933 TYPE:G
 **GENERALIZED SKEW**
        ISTN GGMSE SKEW
      1105 .000
 **SYSTEMATIC EVENTS**
        70 EVENTS TO BE ANALYZED
 **END OF INPUT DATA**
 -PLOTTING POSITIONS- 1105 HOPPER CREEK NEAR PIRU (V.C. #701)
 3
           EVENTS ANALYZED
                                                         ORDERED EVENTS
                           FLOW <sup>3</sup> WATER
CFS <sup>3</sup> RANK YEAR
                                                      WATER FLOW WEIBULL
                                                                                  PLOT POS °
 ° MON DAY YEAR
                                                                       CFS

      0
      0
      1934
      5300.
      3
      1
      2005

      0
      0
      1935
      750.
      3
      2
      1998

      2
      2
      1936
      810.
      3
      3
      1969

      3
      2
      1938
      8000.
      3
      4
      1980

      1
      5
      1939
      1250.
      3
      5
      1938

      2
      25
      1940
      221.
      3
      6
      1995

      2
      21
      1941
      1340.
      3
      7
      1978

      1
      22
      1943
      4200.
      3
      8
      1934

      2
      22
      1944
      1350.
      3
      9
      1992

      2
      2
      1945
      1020.
      3
      10
      1967

      12
      21
      1945
      710.
      3
      11
      1983

      11
      13
      1946
      578.
      3
      12
      1943

      3
      24
      1948
      100.
      3
      13
      1958

      3
      11
      1949
      90.
      3

     0 0 1934 5300. <sup>3</sup> 1 2005 17600. 1.41 °
                                                                    17344.
                                                                                     2.82 °
                                                                     8400.
                                                                                     4.23 °
                                                                      8120.
                                                                                     5.63 °
                                                                      8000.
                                                                                      7.04 °
 0
                                                                                    8.45 °
                                                                      7040.
                                                                                     9.86 °
                                                                     5460.
                                                                     5300. 11.27
                                                                     4799. 12.68
                                                                     4450. 14.08
     2 2 1945
12 21 1945
11 13 1946
3 24 1948
      12 21 1945 710. 3 11 1983 4410.

11 13 1946 578. 3 12 1943 4200.

3 24 1948 100. 3 13 1958 3690.

3 11 1949 90. 3 14 1986 3290.

2 6 1950 1000. 3 15 1966 3000.
 0
                                                                                     15.49
                                                                                     16.90
                                                                                    18.31
     3 11 1949
                                                                                   19.72 °
                                                                                   21.13 °
```

0	1	19	1951	18.	3	16	2004	2680.	22.54	0
0	1	15	1952	2200.	3	17	1952	2200.	23.94	0
0	12	1	1952	126.	3	18	1993	2140.	25.35	0
0	2	13	1954	146.	3	19	1962	1840.	26.76	0
0	2	27	1955	255.	3	20	1991	1680.	28.17	0
0	1	26	1956	992.	3	21	1973	1670.	29.58	0
0	1	13	1957	1160.	3	22	1971	1620.	30.99	0
0	4	3	1958	3690.	3	23	2001	1619.	32.39	0
0	2	16	1959	496.	3	24	1988	1460.	33.80	0
0	4	27	1960	249.	3	25	2000	1420.	35.21	0
0	11	6	1960	61.	3	26	1944	1350.	36.62	0
0	2	10	1962	1840.	3	27	1941	1340.	38.03	0
0	2	9	1963	470.	3	28	1939	1250.	39.44	0
0	11	20	1963	307.	3	29	1957	1160.	40.85	0
0	4	9	1965	504.	3	30	1979	1030.	42.25	0
0	12	29	1965	3000.	3	31	1945	1020.		0
0					3				43.66	0
0	12	6	1966	4450.		32	1950	1000.	45.07	0
	11	20	1967	450.	3	33	1997	1000.	46.48	
0	1	25	1969	8400.	3	34	1956	992.	47.89	0
0	2	28	1970	800.	3	35	1984	981.	49.30	0
0	11	29	1970	1620.	3	36	2003	812.	50.70	0
0	12	24	1971	691.	3	37	1936	810.	52.11	0
0	2	11	1973	1670.	3	38	1970	800.	53.52	0
0	1	7	1974	547.	3	39	1975	799.	54.93	0
0	12	4	1974	799.	3	40	1935	750.	56.34	0
0	2	9	1976	266.	3	41	1946	710.	57.75	0
0	1	3	1977	390.	3	42	1972	691.	59.15	0
0	2	9	1978	5460.	3	43	1947	578.	60.56	0
0	3	27	1979	1030.	3	44	1974	547.	61.97	0
0	2	16	1980	8120.	3	45	1982	527.	63.38	0
0	1	29	1981	311.	3	46	1965	504.	64.79	0
0	4	1	1982	527.	3	47	1959	496.	66.20	0
0	3	1	1983	4410.	3	48	1963	470.	67.61	0
0	12	25	1983	981.	3	49	1968	450.	69.01	0
0	12	16	1984	339.	3	50	1990	412.	70.42	0
0	2	14	1986	3290.	3	51	1994	406.	71.83	0
0	3	6	1987	210.	3	52	1996	400.	73.24	0
0	2	29	1988	1460.	3	53	1977	390.	74.65	0
0					3		1977		76.06	0
0	12	21	1988	307. 412.	3	54		339.		0
0	2	17	1990		3	55	1981	311.	77.46	0
0	3	19	1991	1680.	3	56	1989	307.	78.87	0
	2	12	1992	4799.		57	1964	307.	80.28	
0	2	23	1993	2140.	3	58	1976	266.	81.69	0
0	2	20	1994	406.	3	59	1955	255.	83.10	0
0	1	10	1995	7040.	3	60	1960	249.	84.51	0
0	2	20	1996	400.	3	61	1940	221.	85.92	0
0	12	22	1996	1000.	3	62	1987	210.	87.32	0
0	2	7	1998	17344.	3	63	1999	199.	88.73	0
0	2	9	1999	199.	3	64	2002	196.	90.14	0
0	2	20	2000	1420.	3	65	1954	146.	91.55	0
0	1	11	2001	1619.	3	66	1953	126.	92.96	0
0	11	24	2001	196.	3	67	1948	100.	94.37	0
0	3	15	2003	812.	3	68	1949	90.	95.77	0
0	2	26	2004	2680.	3	69	1961	61.	97.18	0
0	1	10	2005	17600.	3	70	1951	18.	98.59	0
ÈÍ								iiiiiiiiiiiii		ͼ
										_

```
BASED ON 70 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.893
             O LOW OUTLIER(S) IDENTIFIED BELOW TEST VALUE OF
                                                                                                        17 9
HIGH OUTLIER TEST
BASED ON 70 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.893
           0 HIGH OUTLIER(S) IDENTIFIED ABOVE TEST VALUE OF 45626.
-SKEW WEIGHTING -
BASED ON 70 EVENTS, MEAN-SQUARE ERROR OF STATION SKEW = .079
DEFAULT OR INPUT MEAN-SQUARE ERROR OF GENERALIZED SKEW =
FINAL RESULTS
-FREQUENCY CURVE- 1105 HOPPER CREEK NEAR PIRU (V.C. #701)
° COMPUTED EXPECTED <sup>3</sup> PERCENT <sup>3</sup> CONFIDENCE LIMITS °
                                                   CHANCE 3
                                                                               .05
       CURVE PROBABILITY 3
                                             3 EXCEEDANCE 3
            FLOW IN CFS
                                                                                  FLOW IN CFS
44000. <sup>3</sup> .2 <sup>3</sup> 74300. 
29300. <sup>3</sup> .5 <sup>3</sup> 48500.
         37900.
                                                                                                   22500. °
                                                                                                   16100. °
         26100.
                             29300.
                                                           . 5
                                                                              48500.
                            21000.
                                                                    <sup>3</sup> 34000.
                                                                                                 12200. °
         19200.
                                                        1.0
                          14600. ³
                                                                          23000.
                                                                                                   8960. °
                                                        2.0
        13600.
                             8450. 3
                                                       5.0
                                                                    <sup>3</sup> 12800.
                                                                                                   5590. °
          8080.
          5060.
                            5200. <sup>3</sup>
                                                 10.0
20.0
                                                                               7540.
                                                                                                   3640. °
                            2890. ³
                                                                    3
          2850.
                                                                               3990.
                                                                                                   2130. °
                                                                    3
                              925. ³
            925.
                                                     50.0
                                                                               1210.
                                                                                                     707. °
                                                                    3
                              287. 3
                                                      80.0
                                                                                                      208. °
             291.
                                                                                390.
                              152. ³
            157.
                                                      90.0
                                                                     3
                                                                                  219.
                                                                                                      105. °
                                                                                              59.
                       89. <sup>3</sup> 32. <sup>3</sup>
                                            <sup>3</sup> 95.0 <sup>3</sup> 137.
<sup>3</sup> 99.0 <sup>3</sup> 56.
              94.
               35.
\rag{1} \rag{1} \rag{1} \rag{2} 
                                         SYSTEMATIC STATISTICS
° LOG TRANSFORM: FLOW, CFS 3 NUMBER OF EVENTS
° MEAN 2.9566 <sup>3</sup> HISTORIC EVENTS 0 °
                                             .5885 <sup>3</sup> HIGH OUTLIERS

    STANDARD DEV

                                            -.0763 <sup>3</sup> LOW OUTLIERS

    COMPUTED SKEW

                                                                                                    Ω
                                            -.3000 <sup>3</sup> ZERO OR MISSING
° REGIONAL SKEW
° ADOPTED SKEW -.1000 <sup>3</sup> SYSTEMATIC EVENTS 70 °
+ END OF RUN
+ NORMAL STOP IN FFA
```

Exceedance Probability for Hopper -- Gage 701 (Record 70 yrs, Computed Skew -. 0763, Regional Skew -. 30, Adopted Skew -. 10) 100000.0 10000.0 1000.0 100.0 10.0 0.9999 0.9900 0.9000 0.5000 0.1000 0.0100 0.0010 Probability Observed Events (Weibull plotting positions) Computed Curve Expected Probability Curve 5 Percent Confidence Limit 95 Percent Confidence Limit

5.2 SANTA PAULA CREEK FFA

********** *********** FFA FLOOD FREQUENCY ANALYSIS * U.S. ARMY CORPS OF ENGINEERS * PROGRAM DATE: FEB 1995 * THE HYDROLOGIC ENGINEERING CENTER * VERSION: 3.1 * 609 SECOND STREET * RUN DATE AND TIME: * DAVIS, CALIFORNIA 95616 * 28 AUG 07 10:37:36 * (916) 756-1104 * RUN DATE AND TIME: *
28 AUG 07 10:37:36 * (916) 756-1104 ********* INPUT FILE NAME: 709_USGS.DAT OUTPUT FILE NAME: 709_USGS.FFO **TITLE RECORD(S)** TT FLOOD FLOW FREQUENCY SANTA PAULA CRK NEAR SANTA PAULA CR 709 SEASONAL PEAK REGIONAL SKEW -.3 TO DUPLICATE C.O.E. AND BULL 17B MAP **STATION IDENTIFICATION** ID 709 SANTA PAULA CRK NEAR SANTA PAULA DA=40 SQ MI RECORD BEGAN IN 1927 **GENERALIZED SKEW** ISTN GGMSE SKEW 709 .000 -.30 **SYSTEMATIC EVENTS** 72 EVENTS TO BE ANALYZED **END OF INPUT DATA** -SKEW WEIGHTING -BASED ON 72 EVENTS, MEAN-SOUARE ERROR OF STATION SKEW = DEFAULT OR INPUT MEAN-SQUARE ERROR OF GENERALIZED SKEW = PRELIMINARY RESULTS -FREOUENCY CURVE- 709 SANTA PAULA CRK NEAR SANTA PAULA DA= ° COMPUTED EXPECTED ³ PERCENT ³ CONFIDENCE LIMITS ° RVE PROBABILITY ³ CHANCE ³ .05 .95 ° FLOW IN CFS ³ EXCEEDANCE ³ FLOW IN CFS ° CURVE PROBABILITY 3 59800. 67500. 3 .2 3 122000. 34100. ° 43200. 47600. 3 .5 3 84400. 25500. °

 67500.
 3
 .2
 3
 122000.

 47600.
 3
 .5
 3
 84400.

 35300.
 3
 1.0
 3
 61400.

 25200.
 3
 2.0
 3
 42700.

 14900.
 3
 5.0
 3
 24100.

 9100.
 3
 10.0
 3
 14100.

 4860.
 3
 20.0
 3
 7160.

 1320.
 3
 50.0
 3
 1820.

 .5 3 84400. 1.0 3 61400. 2.0 3 42700. 5.0 3 24100. 43200. 32700. 19800. 14800. 23700. 9320. ° 14300. 6000. ° 8850. 3370. ° 4780. 1320. 958. ∘

311.

137.

67.

304. 3

80.0

131. ³ 90.0 ³ 204. 63. ³ 95.0 ³ 107.

439.

209. °

85. °

38. °

```
16.
               14.
                        99.0
SYSTEMATIC STATISTICS
° LOG TRANSFORM: FLOW, CFS 3 NUMBER OF EVENTS

    MEAN

                  3.0722 <sup>3</sup> HISTORIC EVENTS
° STANDARD DEV
                   .7105 <sup>3</sup> HIGH OUTLIERS
                   -.4000 <sup>3</sup> LOW OUTLIERS
 COMPUTED SKEW
                                            Ω
                   -.3000 <sup>3</sup> ZERO OR MISSING
  REGIONAL SKEW
                   -.4000 <sup>3</sup> SYSTEMATIC EVENTS
                                              72
  ADOPTED SKEW
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ FINAL RESULTS
                                 -PLOTTING POSITIONS- 709 SANTA PAULA CRK NEAR SANTA PAULA DA=
EVENTS ANALYZED 3
                              ORDERED EVENTS
               FLOW
                            WATER
                                  FLOW WEIBULL
° MON DAY YEAR
               CFS
                    3
                        RANK YEAR
                                    CFS
                                          PLOT POS °
1 19 1933
              2650. <sup>3</sup>
                        1 2005
                                    27500.
0
               8500. 3
  12 31 1933
                             1969
                                    21000.
                                             2.74
                                                 0
               1530. ³
  1
    5 1935
                         3 1978
                                    16000.
                                            4.11
               2900. 3
                        4 1938
                                            5.48
  2 12 1936
                                    13500.
  2 14 1937
               1350. ³
                        5 1973
                                    13400.
                                            6.85
     2 1938
              13500. ³
                         6
                             1980
                                    11800.
                                             8.22
  3
                    3
  3
     9
        1939
               371.
                         7
                             1943
                                    10000.
                                             9.59
   2 25
        1940
                             1992
                                    10000.
                364.
                         8
                                            10.96
               3150. 3
     4 1941
  3
                         9
                             1958
                                     9130.
                                            12.33
                554. ³
  12 29 1941
                         10
                             1934
                                     8500.
                                            13.70
              10000. 3
     22 1943
                                            15.07
  1
                         11
                             1995
                                     8140.
     22 1944
               1900. ³
                                            16.44
  2.
                        12
                             1952
                                     7300.
     2 1945
               2500. ³
                                     7130.
                                            17.81
                       13
                             1993
              1350. ³
  3 30 1946
                       14
                             1966
                                    6480.
                                            19.18
               850. ³
  11 20 1946
                       15
                             1983
                                    4750.
                                            20.55
                85. 3
  3 24 1948
                             1967
                                            21.92
                       16
                                     4500.
                147. 3
0
  3 11 1949
                       17
                             1979
                                     3680.
                                            23.29
                                                 0
                660. ³
0
                       18
                                            24.66
  2
     9 1950
                             1986
                                    3550.
     28 1951
                8. 3
                        19
                                            26.03
  4
                             2001
                                     3480.
               7300. <sup>3</sup> 219. <sup>3</sup>
                        20
    15 1952
                                     3150.
                                            27.40
  1
                             1941
                        21
0
  12
     20
        1952
                             1962
                                     3150.
                                            28.77
                977. 3
  1
     2.4
        1954
                         22
                             1936
                                     2900.
                                            30.14
                78. ³
     30
        1955
                         23
                             1933
                                     2650.
                                            31.51
                835. 3
     26 1956
  1
                         24
                             1971
                                     2530.
                                            32.88
                825. 3
     13 1957
  1
                         25
                             1945
                                     2500.
                                            34.25
               9130. ³
                       26
     3 1958
                             2004
                                     2410.
                                            35.62
  4
  2 16 1959
               954. ³
                       27
                                            36.99
                                    2130.
                             1997
               156. ³
                       28
  2
     2 1960
                             1988
                                    1950.
                                            38.36
               178. ³
0
  11 12 1960
                       29
                             1982
                                    1910.
                                            39.73
0
  2 10 1962
               3150. ³
                         30
                             1944
                                    1900.
                                            41.10
                684. ³
0
  2.
    9 1963
                        31
                             1935
                                    1530.
                                            42.47
                                                 0
               572. ³
0
  4
    1 1964
                        32
                             1975
                                    1440.
                                            43.84
                548. ³
  4
     9 1965
                        33
                             2000
                                    1410.
                                            45.21
  11 24 1965
               6480. ³
                         34
                             1946
                                     1350.
                                            46.58
               4500. <sup>3</sup>
  12
     6 1966
                         35
                             1937
                                     1350.
                                            47.95
                     3
  11
     21
        1967
                345.
                         36
                             1984
                                     1230.
                                            49.32
                    3
     25
        1969
               21000.
                         37
                             1996
                                     1230.
                                            50.68
               940. 3
  2
     28
        1970
                         38
                             1991
                                     1010.
                                            52.05
               2530. 3
  11
     29
        1970
                         39
                             1954
                                     977.
                                            53.42
                937. ³
     25 1971
                        40
                             1959
                                            54.79 °
  12
                                     954.
```

```
13400. ³
   2 11 1973
                               1970
                                         940.
                                                56.16 °
                 614. ³
      6 1974
                                                57.53
   1
                           42
                               1972
                                         937.
                 1440. 3
      4 1974
  12
                           43
                               1947
                                         850.
                                                58.90
                 458. ³
     9 1976
                                                60.27
                           44
                               1956
                                         835.
   2
     2 1977
                 134. ³
                           45
                               1957
                                         825.
                                                61.64
   1
   2 10 1978
              16000. <sup>3</sup>
                           46
                               2003
                                         782.
                                                63.01
                3680. ³
                                               64.38 °
   1 15 1979
                         47 1994
                                         698.
                                               65.75
              11800. ³
                         48 1963
   2 16 1980
                                        684.
                 527. <sup>3</sup>
     1 1981
                         49 1950
                                        660.
                                               67.12
                                                      0
                1910. ³
  4
     1 1982
                          50 1974
                                        614.
                                               68.49
                4750. <sup>3</sup>
                                         572.
  11 30 1982
                          51
                                                69.86
                               1964
               1230. <sup>3</sup>
90. <sup>3</sup>
3550. <sup>3</sup>
                                         554.
  12 25 1983
                          52
                               1942
                                                71.23
  12 19 1984
                           53
                               1965
                                         548.
                                                72.60
     14 1986
                           54
                               1981
                                         527.
                                                73.97
                 170. ³
      6
         1987
                           55
                               1990
                                         499.
                                                75.34
                1950. ³
   2 28 1988
                           56
                               1976
                                         458.
                                                76.71
     9 1989
                 109. <sup>3</sup> 57
   2
                               1939
                                         371.
                                                78.08
                499. <sup>3</sup> 58 1940
   2 17 1990
                                         364.
                                                79.45
   3 18 1991
                1010. <sup>3</sup> 59 1968
                                         345.
                                               80.82
   2 12 1992
              10000. <sup>3</sup>
                         60 1953
                                        219.
                                               82.19 °
                7130. ³
  1 14 1993
                         61 1961
                                        178.
                                               83.56 °
                 698. ³
                                               84.93 °
   2 20 1994
                         62 1987
                                        170.
               8140. 3
  1 10 1995
                         63 1960
                                        156.
                                                86.30 °
               1230. ³
   2 20 1996
                          64 1949
                                         147.
                                                87.67
                                                      0
               2130. 3
  12 22 1996
                          65 1977
                                         134.
                                                89.04
                                                      0
                      3
   4 11 1999
                 97.
                          66 1989
                                         109.
                                                90.41
                      3
   2 23 2000
                1410.
                          67
                               1999
                                                91.78
                                         97.
   3
      5 2001
               3480.
                           68
                               1985
                                          90.
                                                93.15
                  35. ³
     24
  11
         2001
                           69
                               1948
                                                94.52
                                          85.
                  782. 3
     15 2003
                           70
                               1955
                                          78.
                                                95.89
   3
                2410. 3
   2 26 2004
                           71
                               2002
                                          35.
                                                97.26 °
                      3
     10
                27500.
         2005
                           72
                                1951
                                          8.
                                                98.63
```

-OUTLIER TESTS -

BASED ON 72 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.903

1 LOW OUTLIER(S) IDENTIFIED BELOW TEST VALUE OF 10.2

STATISTICS AND FREQUENCY CURVE ADJUSTED FOR 1 LOW OUTLIER(S)

BASED ON 71 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.897

-SKEW WEIGHTING -

FINAL RESULTS

$-\mathbf{F}$	REQUENCY (CURVE-	709	SANT	A PAU	JLA	CRK	NEAR	SANTA	A PAU	JLA	DA=	
ÉTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT													
0	COMPUTED	EXPEC	ΓED	3]	PERCE	CNT	3	C	ONFIDE	ENCE	LIMI	TS	0
0	CURVE	PROBABII	LITY	3	CHAN	ICE	3		.05		. 9	95	0
0	FLOW	IN CFS		3 E2	XCEEI	OAN	CE 3		FLOW	IN C	CFS		0
ÇÄ	ÇÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ												
0	82800.	9730	00.	3		. 2	3	174	4000.		4630	0.	0
0	54400.	6160	00.	3		. 5	3	108	3000.		3180	0.	0
0	38400.	4240	00.	3	1.	. 0	3	7:	2400.		2330	0.	0
0	26100.	2820	00.	3	2.	. 0	3	4	5700.		1640	0.	0
0	14600.	1530	00.	3	5.		3		4100.		967	70.	0
0	8600.	88'	70.	3	10.	. 0	3	1.3	3400.		597	70.	0
0	4510.	458	30.	3	20.	. 0	3	(5550.		326	50.	0
0	1280.	128	30.	3	50.	. 0	3		1720.		94	17.	0
0	348.	34	42.	3	80.	. 0	3		481.		24	10.	0
0	174.	16	58.	3	90.	. 0	3		251.		11	1.	0
0	97.	9	92.	3	95.	. 0	3		148.		5	8.	0
0	32.	2	29.	3	99.	. 0	3		54.		1	7.	0
ÌÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÏÍÍÍÍ	ÍÍÍÍÍ	ÍÍÍ	ÍÍÍÏ	íííííí	ÍÍÍÍÍÍ	ÍÍÍÍ	ÍÍÍÍÍ	ÍÍÍ	͹
0				YNTHI									0
ÇÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄ	ÄÄÄÄÄ	ÀÄÄ	ÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄ	ÄÄÄÄÄ	ÄÄÄÄ	Ķ
0	LOG TRANSI	FORM: FLO	OW, CF	'S	3	3		NUMBI	ER OF	EVEN	ITS		0
ÇÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄ	ÄÄÄÄÄÅ	ÄÄÄ	ÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄ	ÄÄÄÄÄ	ÄÄÄ	Ķ
0	MEAN			3.094	46 ³	3	HIST	ORIC 1	EVENTS	3		0	0
0	STANDARD	DEV		.662	13 ³	3	HIGH	OUTL:	IERS		0		0
0	COMPUTED	SKEW		094	43 ³	3	LOW (OUTLI	ERS		1		0
0	REGIONAL	SKEW		300	00 3	3	ZERO	OR M	ISSING	3	0		0
0	ADOPTED S	SKEW		100	00	3	SYST:	EMATI	C EVEN	ITS		72	0
ÈÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍ	ÍÍÍÍÌ	İÍÍ	ÍÍÍÍ	íííííí	ÍÍÍÍÍÍ	ÍÍÍÍ	ÍÍÍÍÍ	ÍÍÍ	ͼ
+++++++++++++++++++++++++++++++++++++++													
+	END OF RUI	N	+	•									

5.3 SESPE CREEK AT WHEELER SPRINGS FFA

INPUT FILE NAME: 711_USGS.dat
OUTPUT FILE NAME: 711_USGS.ffo

```
TT FLOOD FLOW FREQUENCY PROGRAM-SESPE CREEK NEAR WHEELER SPRINGS
TT REGIONAL SKEW -.3 TO DUPLICATE C.O.E. RESULTS ON OTHER PROJECTS IN VENTURA CO
TT 1115 SESPE CREEK NEAR WHEELER SPRINGS (VC #711) DA= 50.0SQMI REC BEGAN:194
**STATION IDENTIFICATION**
```

ID PROGRAM - SESPE CREEK NEAR WHEELER SPRINGS

GENERALIZED SKEW

ISTN GGMSE SKEW
GS 1115 .000 -.30

TITLE RECORD(S)

SYSTEMATIC EVENTS
52 EVENTS TO BE ANALYZED

0	2	16	1959	1880.	3	11	1991	3820.	20.75	0
0	1	10	1960	128.	3	12	1962	3800.	22.64	0
0	11	5	1960	674.	3	13	1952	3440.	24.53	0
0	2	10	1962	3800.	3	14	1966	3320.	26.42	0
0	2	9	1963	978.	3	15	1971	3150.	28.30	0
0	4	1	1964	376.	3	16	1958	3010.	30.19	0
0	4	16	1965	69.	3	17	1973	2960.	32.08	0
0	12	29	1965	3320.	3	18	1988	2900.	33.96	0
0	12	6	1966	3840.	3	19	1959	1880.	35.85	0
0	3	8	1968	179.	3	20	1957	1720.	37.74	0
0	1	25	1969	9700.	3	21	1975	1340.	39.62	0
0	2	28	1970	765.	3	22	2003	1280.	41.51	0
0	11	29	1970	3150.	3	23	1976	1010.	43.40	0
0	12	25	1971	381.	3	24	1984	1010.	45.28	0
0	2	11	1973	2960.	3	25	1963	978.	47.17	0
0	1	18	1974	172.	3	26	1979	877.	49.06	0
0	3	7	1975	1340.	3	27	2004	787.	50.94	0
0	9	29	1976	1010.	3	28	1970	765.	52.83	0
0	5	9	1977	194.	3	29	1961	674.	54.72	0
0	2	10	1978	10700.	3	30	1954	616.	56.60	0
0	3	28	1979	877.	3	31	1997	503.	58.49	0
0	2	16	1980	6780.	3	32	1956	468.	60.38	0
0	3	19	1981	228.	3	33	1972	381.	62.26	0
0	4	1	1982	371.	3	34	1964	376.	64.15	0
0	3	1	1983	11600.	3	35	1982	371.	66.04	0
0	12	25	1983	1010.	3	36	1996	296.	67.92	0
0	12	19	1984	33.	3	37	1994	252.	69.81	0
0	2	14	1986	4220.	3	38	1981	228.	71.70	0
0	3	6	1987	216.	3	39	1987	216.	73.58	0
0	2	29	1988	2900.	3	40	1977	194.	75.47	0
0	2	9	1989	50.	3	41	1968	179.	77.36	0
0	1	13	1990	38.	3	42	1974	172.	79.25	0
0	3	18	1991	3820.	3	43	1953	151.	81.13	0
0	2	12	1992	8400.	3	44	1960	128.	83.02	0
0	2	19	1993	5030.	3	45	1965	69.	84.91	0
0	2	7	1994	252.	3	46	1955	69.	86.79	0
0	3	10	1995	8420.	3	47	1950	53.	88.68	0
0	2	20	1996	296.	3	48	1989	50.	90.57	0
0	12	22	1996	503.	3	49	1990	38.	92.45	0
0	2	12	2003	1280.	3	50	1985	33.	94.34	0
0	2	25	2004	787.	3	51	1949	21.	96.23	0
0	2	21	2005	6660.	3	52	1951	16.	98.11	0
È1111111111111111111111111111111111111										
	E									

BASED ON 52 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.783

0 LOW OUTLIER(S) IDENTIFIED BELOW TEST VALUE OF 5.2

BASED ON 52 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.783

FINAL RESULTS

-FREQUENCY CURVE- PROGRAM - SESPE CREEK NEAR WHEELER SPRINGS ° COMPUTED EXPECTED 3 PERCENT 3 CONFIDENCE LIMITS ° CURVE PROBABILITY 3 CHANCE 3 .05 .95 ° 3 EXCEEDANCE 3 FLOW IN CFS FLOW IN CFS 65800. 81300. ³ .2 ³ 175000. 31600. ° 52200. 3 0 3 44200. .5 110000. 22200. ° 31500. 36000. ³ 73900. 1.0 16500. ° 21500. 23800. 3 2.0 3 47400. 11700. ° 11800. 12700. 3 5.0 3 23700. 6860. 12600. 3 3 6810. 7120. 10.0 4150. 3 3460. 3 20.0 3380. 5720. 2170. 536. ° 3 3 808. 808. 50.0 1220. 3 101. ° 170. 165. 80.0 264. 38. ° 72. 67. 90.0 118. 16. ° 31. 34. 95.0 61. 6. 3 99.0 3 17. 8. 3. SYSTEMATIC STATISTICS ° LOG TRANSFORM: FLOW, CFS 3 NUMBER OF EVENTS 2.8685 ³ HISTORIC EVENTS 0 ° MEAN .7746 ³ HIGH OUTLIERS -.3355 ³ LOW OUTLIERS STANDARD DEV 0 COMPUTED SKEW Ω $^{-.3000}$ 3 ZERO OR MISSING 0 $^{\circ}$ $^{-.3000}$ 3 SYSTEMATIC EVENTS 52 $^{\circ}$ REGIONAL SKEW ADOPTED SKEW

5.4 SESPE CREEK AT FILLMORE FFA

********** FFA * U.S. ARMY CORPS OF ENGINEERS *

* THE HYDROLOGIC ENGINEERING CENTER *

* 609 SECOND STREET *

* DAVIS, CALIFORNIA 95616 *

* (916) 756-1104 * FLOOD FREQUENCY ANALYSIS *
PROGRAM DATE: FEB 1995 * PROGRAM DATE: FEB 1995 VERSION: 3.1 RUN DATE AND TIME: *
29 NOV 06 07:53:47 * (916) 756-1104 INPUT FILE NAME: 710USGSR.DAT OUTPUT FILE NAME: 710USGSR.FFO **TITLE RECORD(S)** TT FLOOD FLOW FREQUENCY PROGRAM-SESPE CREEK NEAR FILLMORE REGIONAL SKEW -.3 TO MATCH MAINSTEM VALUES FOR 2006 FEMA **STATION IDENTIFICATION** ID 1130 SESPE CREEK NEAR FILLMORE (VC #710) DA=251.0SQMI REC BEGAN:1932 TYPE:GD **GENERALIZED SKEW** ISTN GGMSE SKEW GS 1130 .000 -.30 **SYSTEMATIC EVENTS** 67 EVENTS TO BE ANALYZED **END OF INPUT DATA** -SKEW WEIGHTING -BASED ON 67 EVENTS, MEAN-SQUARE ERROR OF STATION SKEW = .136 DEFAULT OR INPUT MEAN-SQUARE ERROR OF GENERALIZED SKEW = PRELIMINARY RESULTS -FREQUENCY CURVE- 1130 SESPE CREEK NEAR FILLMORE (VC #710) DA ° COMPUTED EXPECTED ³ PERCENT ³ CONFIDENCE LIMITS ° CURVE PROBABILITY ³ CHANCE ³ .05 .95
FLOW IN CFS ³ EXCEEDANCE ³ FLOW IN CFS

171000. 185000. ³ .2 ³ 320000. 105000.

```
.5
  140000.
          149000.
                             254000.
                                      87500.
                                      74100.
  117000.
          123000.
                     1.0
                             206000.
   93600.
          98000.
                     2.0
                             161000.
                                      60700.
          67000.
                     5.0
   64800.
                             106000.
                                      43400.
   44800.
                     10.0
                                      30900.
          45800.
                             70100.
                    20.0
   27100.
          27500.
                 3
                         3
                            40200.
                                     19300.
                 3
                          3
   8690.
          8690.
                     50.0
                            11900.
                                      6380.
                          3
    2160.
           2110.
                     80.0
                              3010.
                                      1470.
                          3
    938.
            895.
                     90.0
                               1380.
                                       583.
                 3
                         3
                          3
    445.
            412.
                     95.0
                               701.
                                       251.
                 3
            79
                     99.0
     95
                               176.
                                        43
SYSTEMATIC STATISTICS
° LOG TRANSFORM: FLOW, CFS 3 NUMBER OF EVENTS
MEAN
                3.8616 <sup>3</sup> HISTORIC EVENTS 0 °
                 .6672 3 HIGH OUTLIERS
 STANDARD DEV
° COMPUTED SKEW
                 -.8182 <sup>3</sup> LOW OUTLIERS
                                      0

    REGIONAL SKEW

                 -.3000 <sup>3</sup> ZERO OR MISSING
                 -.7000 <sup>3</sup> SYSTEMATIC EVENTS
• ADOPTED SKEW
```

-PLOTTING POSITIONS- 1130 SESPE CREEK NEAR FILLMORE (VC #710) DA

EVENTS ANALYZED 3 ORDERED EVENTS FLOW 3 WATER FLOW WEIBULL ° ° MON DAY YEAR 3 PLOT POS ° RANK YEAR CFS CFS 1 19 1933 12000. ³ 1 2005 85300. 1.47 ° 34000. ³ 12 31 1933 2 1978 73000. 2.94 12500. ³ 3 1995 5 1935 65000. 4.41 7200. ³ 12 1936 4 1998 62500. 5.88 ° 12800. 3 5 1969 56000. 3 6 1938 5000. 3 7 1983 5500. 3 8 1943 17300. 3 9 1992 0 2 14 1937 60000. 7.35 2 1938 56000. 8.82 5000. 3 5500. 3 17300. 3 3150. 3 9 1939 56000. 10.29 3 25 1940 44000. 11.76 2 3 4 1941 44000. 13.24 10 1941 12 28 1980 40700. 14.71 44000. 23 1943 1973 38300. 12 11 16.18 13000. 22 1944 2 1934 34000. 17.65 11500. 3 13 2 1945 2 1958 28400. 19.12 14 3 30 1946 11300. ³ 2001 25900. 20.59 12 25 1946 4850. ³ 15 1962 25600. 22.06 748. ³ 16 1952 3 24 1948 23200. 23.53 725. ³ 3 11 1949 17 1971 22800. 25.00 3000. 2 6 1950 18 1966 26.47 21600. 47. 3 0 1 11 1951 19 1967 21600. 27.94 23200. 3 0 1 15 1952 20 1997 19800. 29.41 0 3370. ³ 21 12 4 1952 2004 17700. 30.88 4400. ³
785. ³
3900. ³
7650. ³ 2 13 1954 22 1941 17300. 32.35 23 4 30 1955 1991 16300. 33.82 26 1956 24 1944 13000. 35.29 13 1957 25 1937 12800. 36.76 28400. 3 3 1958 26 1935 12500. 38.24 8280. 3 2 16 1959 27 1933 12000. 39.71 1330. ³ 28 1 10 1960 1945 11500. 41.18 °

```
11
       6 1960
                   836. 3
                              29
                                   1946
                                           11300.
                                                     42.65
                  25600.
   2
      10
          1962
                              30
                                   1982
                                            9660.
                                                     44.12
                   4400.
      10
          1963
                              31
                                   1970
                                            8800.
                                                     45.59
                   2590. 3
                                                     47.06
          1964
                              32
                                   1959
                                            8280.
       1
                  2440. 3
   4
       9
          1965
                              33
                                   1957
                                            7650.
                                                     48.53
  12
      29
         1965
                  21600. 3
                              34
                                   2003
                                            7630.
                                                     50.00
                 21600. 3
  12
      6
         1966
                              35
                                   1975
                                            7210.
                                                     51.47
                  1940. ³
                                   1936
                                                     52.94
  11
      21
         1967
                              36
                                            7200.
                  60000. 3
   1
      25 1969
                              37
                                   1974
                                            6860.
                                                     54.41
                  8800.
   2
      28 1970
                              38
                                   1984
                                            6330.
                                                     55.88
                        3
      29 1970
                              39
  11
                  22800.
                                   1979
                                            6300.
                                                     57.35
                        3
      25 1971
                  4810.
  12
                              40
                                   1940
                                            5500.
                                                     58.82
   2
      11
          1973
                  38300.
                         3
                              41
                                   1939
                                            5000.
                                                     60.29
          1974
                         3
   1
                  6860.
                              42
                                   2000
                                            4900.
                                                     61.76
          1975
                   7210.
                         3
                                   1996
                                            4870.
                                                     63.24
   3
       8
                              43
                        3
   2
       9
          1976
                  3650.
                              44
                                   1947
                                            4850.
                                                     64.71
                  1020. 3
   5
      9
         1977
                              45
                                   1972
                                            4810.
                                                     66.18
      10 1978
                 73000.
                              46
                                            4400.
                                                     67.65
   2
                                   1963
                  6300. ³
      28 1979
   3
                              47
                                   1954
                                            4400.
                                                     69.12
   2 16 1980
                 40700. 3
                              48
                                   1956
                                            3900.
                                                     70.59
                  2160. ³
   3
      1 1981
                              49
                                   1976
                                            3650.
                                                     72.06
                  9660. ³
      1 1982
                                   1953
                                                     73.53
                              50
                                            3370.
                 56000. ³
   3
      1 1983
                              51
                                   1942
                                            3150.
                                                     75.00
                                                           0
                  6330. ³
  12 25 1983
                              52
                                   1950
                                            3000.
                                                     76.47
                                                            0
                        3
  12 19 1984
                  1450.
                              53
                                   1994
                                            2590.
                                                     77.94
                                                            0
                        3
                 16300.
                                   1964
      19 1991
                              54
                                            2590.
                                                     79.41
   3
      12 1992
                  44000.
                                   1965
                                            2440.
                                                     80.88
   2
                              55
                         3
   2
       7
          1994
                  2590.
                              56
                                   1981
                                            2160.
                                                     82.35
      10
          1995
                 65000.
                         3
                              57
                                   1968
                                            1940.
                                                     83.82
   1
   2.
      21
          1996
                   4870.
                              58
                                   1985
                                            1450.
                                                     85.29
  12
      22
          1996
                 19800.
                         3
                              59
                                   1960
                                            1330.
                                                     86.76
                  62500.
   2
       3
          1998
                              60
                                   1977
                                            1020.
                                                     88.24
                   445. ³
      9
         1999
                                                     89.71
   2.
                              61
                                   1961
                                             836.
      23 2000
                   4900. 3
                              62
                                                     91.18
                                   1955
                                             785.
   2
                  25900. <sup>3</sup>
   3
      6 2001
                              63
                                   1948
                                             748.
                                                     92.65
                    93. 3
  11
     24 2001
                              64
                                   1949
                                             725.
                                                     94.12
                  7630. ³
                                             445.
      12
          2003
                              65
                                   1999
                                                     95.59
                 17700. 3
   2
      25
         2004
                              66
                                   2002
                                              93.
                                                     97.06
                                                           0
                         3
   1
      10 2005
                 85300.
                              67
                                   1951
                                              47.
                                                     98.53
```

BASED ON 67 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.877

1 LOW OUTLIER(S) IDENTIFIED BELOW TEST VALUE OF 87.5

STATISTICS AND FREQUENCY CURVE ADJUSTED FOR 1 LOW OUTLIER(S)

BASED ON 66 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.871

-SKEW WEIGHTING -

FINAL RESULTS

```
-FREQUENCY CURVE- 1130 SESPE CREEK NEAR FILLMORE (VC #710) DA
° COMPUTED EXPECTED <sup>3</sup> PERCENT <sup>3</sup> CONFIDENCE LIMITS °
  CURVE PROBABILITY 3
                  CHANCE 3
                              .05 .95
    FLOW IN CFS
              3 EXCEEDANCE 3
                               FLOW IN CFS
227000. 254000. <sup>3</sup> .2 <sup>3</sup> 432000. 138000. °
0
  172000. 188000. <sup>3</sup>
                          3
                             313000.
                     .5
                                    107000. °
  135000. 145000. <sup>3</sup>
0
                     1.0
                            238000.
                                    86100. °
  102000.
         108000. <sup>3</sup>
                          3
                            173000.
                     2.0
                                     67100. °
  66000.
                     5.0
         68600. ³
                          3
                            106000.
                                     45100. °
  43700.
                    10.0
                            66400.
          44800.
                          3
                                     30900.
                          3
                            36900.
11300.
          26000.
                3
   25700.
               3
                     20.0
                                     18800.
                         3
                                      6340.
           8430.
                     50.0
   8430.
               3
                         3
                                      1700. °
    2430.
           2380.
                     80.0
                              3300.
                                       776. °
               3
                         3
   1200.
           1150.
                     90.0
                              1710.
                         <sup>3</sup> 977.
           610. ³
                                       389. °
                     95.0
    649.
                3
                                       96. °
                     99.0
    191.
            166.
                               326.
SYNTHETIC STATISTICS
° LOG TRANSFORM: FLOW, CFS 3 NUMBER OF EVENTS
3.8853 ^{3} HISTORIC EVENTS ^{\circ}
MEAN
                .6130 <sup>3</sup> HIGH OUTLIERS
 STANDARD DEV
                                      Ω
 COMPUTED SKEW
                -.4936 <sup>3</sup> LOW OUTLIERS
                                     1
            -.3000 ^3 ZERO OR MISSING 0 ^\circ -.4000 ^3 SYSTEMATIC EVENTS 67 ^\circ
 REGIONAL SKEW
 ADOPTED SKEW
```

Exceedance Probability for Sespe - Gage 710 (Record 67 yrs, Computed Skew -.4936, Regional Skew -.30, Adopted Skew -.40)

5.5 SANTA CLARA RIVER AT MONTALVO FFA

```
*********
                                             **********
               FFA
    FLOOD FREQUENCY ANALYSIS * U.S. ARMY CORPS OF ENGINEERS * PROGRAM DATE: FEB 1995 * THE HYDROLOGIC ENGINEERING CENTER * UERSION: 3.1 * 609 SECOND STREET * DAVIS, CALIFORNIA 95616 * 18 OCT 06 16:10:02 * (916) 756-1104 *
 INPUT FILE NAME: 70805.txt
OUTPUT FILE NAME: 70805.out
**TITLE RECORD(S)**
TT FLOOD FLOW FREQUENCY PROGRAM - SANTA CLARA RIVER AT MONTALVO(HWY.101 BRIDGE)
TT PEAK VALUES FOR 1932-1955 GENERATED DURING HYDROLOGIC ANALYSIS W/ COE
TT REGIONAL SKEW -.3 TO DUPLICATE C.O.E. RESULTS IN VENTURA CO
**STATION IDENTIFICATION**
   708 SANTA CLARA RIVER AT MONTALVO DA= 1624SQMI REC BEGAN:1932 TYPE RG/FW
**GENERALIZED SKEW**
    ISTN GGMSE SKEW 708 .000 -.30
     708 .000
**SYSTEMATIC EVENTS**
    68 EVENTS TO BE ANALYZED
**END OF INPUT DATA**
-PLOTTING POSITIONS- 708 SANTA CLARA RIVER AT MONTALVO DA= 162
EVENTS ANALYZED 3 ORDERED EVENTS °
FLOW 3 WATER FLOW WEIBULL °
DAY YEAR CFS 3 RANK YEAR CFS PLOT POS °
                   CFS <sup>3</sup> RANK YEAR
° MON DAY YEAR
0 0 1932 22000. <sup>3</sup> 1 1969 147000. 1.45 °
   0 0 1932 22000. 3 1 1909 147000.

0 0 1934 46000. 3 2 2005 136000.

0 0 1935 17000. 3 3 1992 104000.

0 0 1936 16000. 3 4 1978 102200.

0 0 1937 19000. 3 5 1983 100000.

0 0 1938 95000. 3 6 1938 95000.
                                                            2.90 °
                                                            4.35 °
                                                            8.70
   0 0 1939 6400. <sup>3</sup>
                               7 1998
8 1980
9 1943
                                  7 1998
                                                84000. 10.14
   0 0 1940 3300. 3 8 1980 81400.

0 0 1941 30000. 3 9 1943 72000.

0 0 1942 3600. 3 10 1973 58200.

0 0 1943 72000. 3 11 1958 50000.

0 0 1944 28000. 3 12 1934 46000.

0 0 1945 16000. 3 13 1952 45000.

0 0 1946 14000. 3 14 1993 44300.
                                                81400. 11.59
                                                  72000. 13.04
                                                 58200. 14.49
                                                          15.94
                                                            17.39
                                                           18.84
                                                          20.29
   0 0 1946
                    9000. <sup>3</sup> 15 1962
  0 0 1947
                                                44000.
                                                           21.74 °
  0 0 1950 2280. 3 16 1966 44000. 23.19 ° 0 0 1952 45000. 3 17 1986 43700. 24.64 ° 0 0 1953 2700. 3 18 1967 35000. 26.09 °
```

```
0
        0
           1954
                    5300.
                                     2001
                                              32900.
                                                        27.54
    0
        0
           1955
                     500.
                                20
                                     1941
                                              30000.
                                                        28.99
    0
        0
           1956
                    5550.
                                21
                                     1971
                                              28800.
                                                        30.43
                                     1944
                                                        31.88
           1957
                    3780.
                                22
                                              28000.
    0
        0
    0
        0
          1958
                   50000.
                                23
                                     1991
                                              25000.
                                                        33.33
        0
          1959
                   11000.
                          3
                                24
                                     1932
                                              22000.
                                                        34.78
    0
                          3
        0
          1960
                     408.
                                25
                                     1997
                                              20500.
                                                        36.23
                          3
          1961
                     216.
                                26
                                     2004
                                              19600.
                                                        37.68
0
                          3
        0
          1962
                   44000.
                                27
                                     1937
                                              19000.
                                                        39.13
0
                          3
    0
       0
         1963
                    5060.
                                28
                                     1979
                                              18600.
                                                        40.58
       0
                          3
    Ω
          1964
                    2350.
                                29
                                     1935
                                              17000.
                                                        42.03
                          3
                                     1996
    Λ
       Ω
          1965
                    3360.
                                30
                                              17000.
                                                        43.48
    0
           1966
                   44000.
                          3
                                31
                                     1936
                                              16000.
                                                        44.93
           1967
                           3
    0
                   35000.
                                32
                                     1945
                                              16000.
                                                        46.38
           1968
                    4000.
                           3
                                     1974
                                              14700.
                                                        47.83
    0
                                33
                           3
    0
        0
           1969
                  147000.
                                34
                                     1946
                                              14000.
                                                        49.28
                           3
    0
       0
           1970
                    9960.
                                35
                                     2003
                                              13600.
                                                        50.72
                   28800. 3
    0
       0 1971
                                36
                                              13500.
                                                        52.17
                                     1988
                   8350. 3
       0 1972
    0
                                37
                                     1959
                                              11000.
                                                        53.62
    0
       0 1973
                   58200. <sup>3</sup>
                                38
                                     1975
                                              10800.
                                                        55.07
                   14700. ³
    0
       0 1974
                                39
                                     1970
                                               9960.
                                                        56.52
                   10800. 3
        0 1975
                                     1947
                                                        57.97
    0
                                40
                                               9000.
                    5420. ³
0
    0
        0 1976
                                41
                                     1982
                                               8600.
                                                        59.42
                                                               0
                    3850. 3
    0
       0 1977
                                42
                                     1972
                                               8350.
                                                        60.87
                          3
   0
       0 1978
                  102200.
                                43
                                     1939
                                               6400.
                                                        62.32
                                                               0
                          3
    0
       0 1979
                   18600.
                                     2000
                                               6370.
                                                        63.77
                                                               0
                                44
       0
          1980
                   81400.
    0
                                45
                                     1956
                                               5550.
                                                        65.22
                           3
    0
        0
           1981
                    3620.
                                46
                                     1976
                                               5420.
                                                        66.67
           1982
                    8600.
                           3
                                                        68.12
    0
        0
                                47
                                     1954
                                               5300.
    0
        0
           1983
                  100000.
                                48
                                     1963
                                               5060.
                                                        69.57
    0
        0
           1984
                    4930.
                                49
                                     1984
                                               4930.
                                                        71.01
                                                        72.46
    0
       0
           1985
                    4040.
                                50
                                     1985
                                               4040.
          1986
                   43700.
                                               4000.
                                                        73.91
    0
       Ω
                                51
                                     1994
          1987
                                                        75.36
    0
       0
                     851.
                                52
                                     1968
                                               4000.
                          3
    0
       0
          1988
                   13500.
                                53
                                     1977
                                               3850.
                                                        76.81
          1990
                          3
    0
       0
                   1200.
                                54
                                     1957
                                               3780.
                                                        78.26
                   25000. 3
        0
          1991
                                55
                                     1981
                                                        79.71
                                               3620.
                          3
0
    0
       0
          1992
                  104000.
                                56
                                     1942
                                               3600.
                                                        81.16
                                                               0
0
                          3
    0
       0
         1993
                   44300.
                                57
                                     1965
                                               3360.
                                                        82.61
                          3
    0
       Ω
          1994
                   4000.
                                                        84.06
                                58
                                     1940
                                               3300.
       0
          1996
                   17000.
                          3
                                59
                                               2700.
    0
                                     1953
                                                        85.51
                          3
    0
           1997
                   20500.
                                60
                                     1964
                                               2350.
                                                        86.96
           1998
                          3
    Ω
       0
                   84000.
                                61
                                     1950
                                               2280.
                                                        88.41
                          3
       0
           1999
                     763.
                                     1990
                                               1200.
                                                        89.86
    0
                                62
    0
       0
           2000
                    6370.
                           3
                                63
                                     1987
                                                851.
                                                        91.30
                           3
   0
       0
           2001
                   32900.
                                64
                                     1999
                                                763.
                                                        92.75
    0
        0
           2002
                     331.
                                65
                                     1955
                                                500.
                                                        94.20
    0
           2003
                   13600.
                                                408.
                                                        95.65
        0
                                66
                                     1960
                                67
    0
           2004
                   19600.
                                     2002
                                                331.
                                                        97.10
                          3
           2005
                  136000.
                                68
                                     1961
                                                216.
                                                        98.55
-OUTLIER TESTS
LOW OUTLIER TEST
BASED ON 68 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.883
```

O LOW OUTLIER(S) IDENTIFIED BELOW TEST VALUE OF

136.0

BASED ON 68 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.883

FINAL RESULTS

```
708 SANTA CLARA RIVER AT MONTALVO DA= 162
-FREQUENCY CURVE-
COMPUTED EXPECTED <sup>3</sup> PERCENT <sup>3</sup> CONFIDENCE LIMITS <sup>o</sup>
                                         .95
  CURVE PROBABILITY 3
                    CHANCE 3
                                  .05
                3 EXCEEDANCE 3
                                  FLOW IN CFS
     FLOW IN CFS
373000. 415000. <sup>3</sup> .2 <sup>3</sup>
                              727000. 222000. °
  286000.
         311000.
                                        174000. °
                       .5
                                535000.
  226000.
          242000. 3
                               409000.
                       1.0
                                        141000. °
  172000.
                       2.0
          182000. ³
                             3
                                300000.
                                        110000.
                  3
                            3
  111000.
          115000.
                       5.0
                                183000.
                                         73900.
           74700.
                  3
                       10.0
                            3
   72800.
                               114000.
                                         50200.
                 3
                            3
                                         30000.
   41900.
           42600.
                       20.0
                                61900.
                                         9430. °
   12800.
           12800.
                      50.0
                            3
                               17500.
                                         2230. °
    3270.
            3200.
                      80.0
                                 4560.
                                          930. °
    1490.
            1420.
                      90.0
                                 2180.
     744.
                      95.0
                                          426. °
            694.
                                 1160.
                 3
                            3
     184.
             156.
                       99.0
                                  331.
                                           86.
SYSTEMATIC STATISTICS
° LOG TRANSFORM: FLOW, CFS 3 NUMBER OF EVENTS
4.0526 <sup>3</sup> HISTORIC EVENTS
.6656 <sup>3</sup> HIGH OUTLIERS
 MEAN
 STANDARD DEV
                  -.5154 <sup>3</sup>
                                         0
  COMPUTED SKEW
                          LOW OUTLIERS
                 -.3000 <sup>3</sup> ZERO OR MISSING 0 ° -.5000 <sup>3</sup> SYSTEMATIC EVENTS 68 °
                  -.3000 <sup>3</sup>
 REGIONAL SKEW
 ADOPTED SKEW
```

Exceedance Probability for Santa Clara River at Montalvo -- Gage 708 (Record 68 yrs, Computed Skew -.5154, Regional Skew -.30, Adopted Skew -.50)

5.6 SANTA CLARA RIVER AT COUNTY LINE FFA

```
*********
                                    **********
            FFA
   FLOOD FREQUENCY ANALYSIS * U.S. ARMY CORPS OF ENGINEERS * PROGRAM DATE: FEB 1995 * THE HYDROLOGIC ENGINEERING CENTER * VERSION: 3.1 * 609 SECOND STREET * RUN DATE AND TIME: * DAVIS, CALIFORNIA 95616 * 18 OCT 06 16:22:09 * (916) 756-1104 *
                                    **********
*********
INPUT FILE NAME: 70705A.DAT
OUTPUT FILE NAME: 70705A.OUT
  DSS FILE NAME: 70705A.DSS
  ----DSS---ZOPEN: Existing File Opened, File: 70705A.DSS
                   Unit: 71; DSS Version: 6-JB
**TITLE RECORD(S)**
TT FLOOD FLOW FREQUENCY PROGRAM - SANTA CLARA RIVER AT VENTURA/LA COUNTY LINE
   PEAK VALUES FOR 1952-1997
   REGIONAL SKEW -.3 TO DUPLICATE C.O.E. RESULTS IN VENTURA CO
**STATION IDENTIFICATION**
   707 SANTA CLARA RIVER AT VENTURA/LA COUNTY LINE REC BEGAN:1952 TYPE RG/FW
**GENERALIZED SKEW**
   ISTN GGMSE SKEW
GS 707 .000 -.30
**SYSTEMATIC EVENTS**
   52 EVENTS TO BE ANALYZED
**END OF INPUT DATA**
-PLOTTING POSITIONS- 707 SANTA CLARA RIVER AT VENTURA/LA COUNTY
EVENTS ANALYZED <sup>3</sup> ORDERED EVENTS ° FLOW <sup>3</sup> WATER FLOW WEIBULL °
                CFS <sup>3</sup> RANK YEAR
                                        CFS PLOT POS °
MON DAY YEAR
11 15 1953 375. <sup>3</sup> 1 1969 49870. 1.89 °
                 578. ³
  2 13 1954
                           2 2005
  3 /8. 3
1 26 1955 419. 3
1 26 1956 672. 3
3 1 1957 1209. 3
4 3 1958 5411. 3
1 6 1959 1561. 3
1 6 1960 83. 3
                                       32000.
                                                 3.77
                                                 5.66
                          3 1983
                                       30600.
                                                 7.55
                           4 1978
                                       22800.
                           5
                               1967
                                        22213.
                                                 9.43
                         6
                               1995
                                        17100. 11.32
                                               13.21
                            7
                                1980
                                        13900.
                1561. <sup>3</sup> 7
83. <sup>3</sup> 8
145. <sup>3</sup> 9
     6 1960
6 1961
                                1973
                                        12800.
                                                 15.09
                                                16.98 °
 11
                                       12300.
                                1986
               6965. <sup>3</sup> 10 1992
  2 11 1962
                                       12300.
                                                18.87 °
                1026. <sup>3</sup> 11 1993
  3 16 1963
                                       10700.
                                                20.75 °
° 1 22 1964
                 411. <sup>3</sup> 12 1962
                                                22.64 °
                                        6965.
                                       6960. 24.53 ° 6949. 26.42 °
° 4 9 1965 1064. ³ 13 1991
° 12 29 1966 22213. ³ 14 1972
```

```
4998. <sup>3</sup>
   1 24 1967
                            15
                                1979
                                         6020.
                                                 28.30
                                                       0
                 2174. 3
                                                 30.19
  11
      19
         1967
                            16
                                1958
                                         5411.
                 49870. 3
   1
      25
         1969
                            17
                                1974
                                         5150.
                                                 32.08
                  759. ³
                                                 33.96
         1970
                            18
                                1967
                                         4998.
   3
      2
                 6949. <sup>3</sup>
                                                 35.85
  11
     29 1971
                            19
                                1996
                                         4450.
  12
      27 1972
                 3410. ³
                            20
                                1989
                                         3900.
                                                 37.74
                12800. <sup>3</sup>
   2
     11 1973
                            21
                                1973
                                         3410.
                                                 39.62
        1974
                 5150. <sup>3</sup>
                                2004
   1
      7
                            22
                                         2640.
                                                 41.51
0
                 2210. 3
  12
      4 1975
                            23
                                1981
                                         2470.
                                                 43.40
                                                       0
                 1700. ³
   2
      9 1976
                            24
                                2000
                                         2440.
                                                 45.28
                 1880. ³
      8 1977
                            25
   5
                                2003
                                         2330.
                                                 47.17
                22800. <sup>3</sup>
                                                 49.06
      9 1978
   2
                            26
                                1986
                                         2270.
   3
      27
         1979
                 6020.
                       3
                            27
                                1976
                                         2210.
                                                 50.94
                      3
         1980
                13900.
      16
                            28
                                1968
                                         2174.
                                                 52.83
                 2470. 3
      28
         1981
                            29
                                1977
                                         1880.
                                                 54.72
                 1730. ³
      17
   3
         1982
                            30
                                1990
                                         1870.
                                                 56.60
                                                        0
                30600. 3
      1 1983
   3
                            31
                                1982
                                         1730.
                                                 58.49
                 308. 3
  12 25 1984
                                         1700.
                            32
                                1976
                                                 60.38
  12 19 1985
                 2270. ³
                            33
                                1959
                                         1561.
                                                 62.26
  2 15 1986
                12300. <sup>3</sup>
                            34
                                1988
                                         1460.
                                                 64.15
                 1460. ³
  11 18 1987
                            35
                                1989
                                         1340.
                                                 66.04
                 1340. ³
  12 14 1988
                                2001
                                                 67.92
                                                       0
                            36
                                         1230.
                 3900. ³
0
   2 28 1989
                            37
                                1957
                                         1209.
                                                 69.81
                                                       0
                 1870. ³
   2 17 1990
                            38
                                1965
                                         1064.
                                                 71.70
                                                       0
                 6960. ³
      1 1991
                                                 73.58
   3
                            39
                                1963
                                         1026.
                                                       0
   2 12 1992
                12300. <sup>3</sup>
                            40
                                1970
                                          759.
                                                 75.47
                                                       0
                      3
                10700.
   2 18 1993
                                2002
                                          729.
                                                 77.36
                            41
                       3
  12
     11 1994
                  597.
                            42
                                1956
                                          672.
                                                 79.25
      10
         1995
                17100.
                       3
                                1995
                                          597.
                                                 81.13
   1
                            43
      20 1996
                       3
   2.
                 4450.
                            44
                                1954
                                          578.
                                                 83.02
                  303. 3
   3
      24 1997
                            45
                                1955
                                          419.
                                                 84.91
      12 1999
                  277. 3
                                                 86.79
   4
                            46
                                1964
                                          411.
                 2440. 3
   2 23 2000
                            47
                                                 88.68
                                1954
                                          375.
                 1230. ³
                                                 90.57
      6 2001
                            48
                                1985
                                          308.
   3
                  729. <sup>3</sup>
  11 24 2001
                            49
                                1997
                                          303.
                                                 92.45
                 2330. 3
                            50
   2 12 2003
                                1999
                                          277.
                                                 94.34
        2004
                 2640. <sup>3</sup>
                            51
                                1962
                                          145.
                                                 96.23
   2 26
                      3
   1 10 2005
                 32000.
                            52
                                1960
                                           83.
                                                 98.11
                                                       0
-OUTLIER TESTS -
LOW OUTLIER TEST
BASED ON 52 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.783
      0 LOW OUTLIER(S) IDENTIFIED BELOW TEST VALUE OF
                                                   40.6
HIGH OUTLIER TEST
BASED ON 52 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.783
     O HIGH OUTLIER(S) IDENTIFIED ABOVE TEST VALUE OF 145291.
```

-SKEW WEIGHTING -

FINAL RESULTS

-FREQUENCY CURVE- 707 SANTA CLARA RIVER AT VENTURA/LA COUNTY										
£1111111111111111111111111111111111111										
° COMPUT	ED EXPEC	TED 3	PERCE	NT 3	CONFID	ENCE LIMITS	0			
 CURVE 	PROBABI	LITY 3	CHAN	CE 3	.05	.95	0			
° FL	OW IN CFS	3	EXCEED	ANCE 3	FLOW	IN CFS	0			
ÇÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÅÄÄÄÄÄÅ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÅ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ΡÄ			
° 14000	0. 1740	00.		2 3	333000.	73100.	0			
° 9330	0. 1100	00.		5 3	207000.	51300.	0			
° 6660		.00.	1.	0 3	140000.	38100.	0			
° 4590	0. 508	300.	2.	0 3	90500.	27400.	0			
° 2610		00.	5.		47000.	16500.	0			
° 1570			10.	0 3	26200.	10400.	0			
° 842	0. 86	310. ³	20.	0 3	13000.	5850.	0			
° 249		90. 3	50.	0 3	3500.	1770. 462. 217.	0			
° 71	0. 6	594. ³	80.	0 3	1020.	462.	0			
° 36		347.	90.	0 3	550.	217.	0			
° 20	8. 1	.93. 3	95.	0 3	331.		0			
۰ 7	1.	61. 3	99.		128.	33.	0			
ìíííííííí	ííííííííííí	ÍÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÏ	ÍÍÍÍÍÍÍÍÍ	ííííííííííííííííííííííííííííííííííííííí	͹			
0		SYS	TEMATIC	STATIS'	TICS		0			
ÇÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ΡÄ			
° LOG TRA	NSFORM: FL	OW, CFS	3		NUMBER OF	EVENTS	0			
ÇÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÅ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ΡÄ			
° MEAN		3	.3853 3	HIST	ORIC EVENT	S 0	0			
° STANDA	RD DEV		.6385 ³	HIGH	OUTLIERS	0	0			
° COMPUT	ED SKEW	_	.0120 3	LOW	OUTLIERS	0	0			
° REGION	AL SKEW D SKEW	_	.3000	ZERO	OR MISSIN	G 0	0			
o ADOPTE	D SKEW	_	.1000	SYST	EMATIC EVE	NTS 52	0			
ÈIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII										
+++++++++++++++++++++++++++++++++++++++										

+ END OF RUN + NORMAL STOP IN FFA +

Exceedance Probability for Santa Clara at County Line -- Gage 707 (Record 52 yrs, Computed Skew -.012, Regional Skew -.30, Adopted Skew -.10

SECTION 6 APPENDIX B- LOS ANGELES COUNTY FFA OUTPUT AND PROBABILITY PLOTS

6.1 ALISO CREEK AT BLUM RANCH FFA

```
********
                                                   *********
                 FFA
     FLOOD FREQUENCY ANALYSIS * U.S. ARMY CORPS OF ENGINEERS * PROGRAM DATE: FEB 1995 * THE HYDROLOGIC ENGINEERING CENTER * VERSION: 3.1 * 609 SECOND STREET * RUN DATE AND TIME: * DAVIS, CALIFORNIA 95616 * 05 MAY 10 14:27:37 * (916) 756-1104 *
*********
                                                   **********
 INPUT FILE NAME: ALISO.DAT
OUTPUT FILE NAME: ALISO.OUT
   DSS FILE NAME: ALISO.DSS
   ----DSS---ZOPEN: Existing File Opened, File: ALISO.DSS
                          Unit: 71; DSS Version: 6-JB
**TITLE RECORD(S)**
TT FLOOD FLOW FREQUENCY PROGRAM - ALISO CREEK AT BLUM RANCH
TT REGIONAL SKEW -0.3
**GENERALIZED SKEW**
     ISTN GGMSE SKEW
F375 .000 -.30
GS F375 .000
**STATION IDENTIFICATION**
ID F375 ALISO CREEK AT BLUM RANCH DA=23.7 SOMI REC BEGAN: 1965
**SYSTEMATIC EVENTS**
      12 EVENTS TO BE ANALYZED
**END OF INPUT DATA**
-PLOTTING POSITIONS- F375 ALISO CREEK AT BLUM RANCH DA=23.7 SQM
EVENTS ANALYZED <sup>3</sup> ORDERED EVENTS ° FLOW <sup>3</sup> WATER FLOW WEIBULL °
                  FLOW <sup>3</sup> WATER
CFS <sup>3</sup> RANK YEAR
MON DAY YEAR
                                                        CFS PLOT POS °
12 29 1965 555. 3 1 1969 2110. 7.69 °

    12
    29
    1965
    555.
    3
    1
    1969

    12
    6
    1966
    219.
    3
    2
    1973

    11
    19
    1967
    116.
    3
    3
    1966

    1
    25
    1969
    2110.
    3
    4
    1971

    3
    2
    1970
    105.
    3
    5
    1967

    11
    29
    1970
    406.
    3
    6
    1968

    12
    24
    1971
    54.
    3
    7
    1970

    2
    11
    1973
    704.
    3
    8
    1974

    3
    2
    1974
    73.
    3
    9
    1972

    3
    2
    1974
    73.
    3
    10
    1075

                       15.38

15.38

15.38

23.08

406. 30.77

219. 38.46

6 1968 116. 46.15

105. 53.85

704. 3 8 1974 73. 61.57

73. 3 9 1972 54.

30. 3 10 1975

7. 3 11 1977
° 12 6 1966
                                                         704. 15.38 °
                                                         555. 23.08 °
                                                                  61.54 ° 69.23 °
                                                           30. 76.92 °
   3 8 1975
   2 9 1976
                                                                   84.62 °
```

```
5 9 1977
             14.
                   12
                      1976
                                   92.31 °
-OUTLIER TESTS -
LOW OUTLIER TEST
BASED ON 12 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.134
    0 LOW OUTLIER(S) IDENTIFIED BELOW TEST VALUE OF 3.4
HIGH OUTLIER TEST
BASED ON 12 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.134
   O HIGH OUTLIER(S) IDENTIFIED ABOVE TEST VALUE OF
                                    4384.
-SKEW WEIGHTING -
BASED ON 12 EVENTS, MEAN-SQUARE ERROR OF STATION SKEW =
DEFAULT OR INPUT MEAN-SQUARE ERROR OF GENERALIZED SKEW =
                                     302
FINAL RESULTS
-FREQUENCY CURVE- F375 ALISO CREEK AT BLUM RANCH DA=23.7 SQM
° COMPUTED EXPECTED <sup>3</sup> PERCENT <sup>3</sup> CONFIDENCE LIMITS °
              3 EXCEEDANCE 3 FIOR T
  CURVE PROBABILITY 3
                                  .95
    FLOW IN CFS
                            FLOW IN CFS
10200. 33300. <sup>3</sup> .2 <sup>3</sup>
                         136000.
                                  2660. 0
                      3
         16400. ³
0
                          72500.
   6720.
                    . 5
                 1.0 <sup>3</sup>
         9530. ³
0
   4720.
                          42900.
                                  1450. °
         5410. 3
                   2.0
                                  1060. °
0
   3190.
                          24000.
   1750.
         2430. 3
                   5.0
                        3
                          9930.
                                  648.
   1010.
         1240.
               3
                   10.0
                        3
                                   408.
                           4500.
         565.
                       3
0
               3
                           1730.
    507.
                   20.0
                                   222.
          128.
               3
                   50.0
                        3
                            304.
    128.
                                    55.
          27.
               3
                   80.0
                        3
                                       0
     30.
                            69.
                                     9.
     14.
           11.
               3
                   90.0
                        3
                             34.
                                     3.
           5.
     7.
                   95.0
                             20.
                                     1.
        1.
                             7.
     2. .
                   99.0
                                    Ο.
SYSTEMATIC STATISTICS
° LOG TRANSFORM: FLOW, CFS
                   3
                        NUMBER OF EVENTS
2.0846 <sup>3</sup> HISTORIC EVENTS 0 °
               .7297 <sup>3</sup> HIGH OUTLIERS
° STANDARD DEV
                                  Ω
               -.0596 <sup>3</sup> LOW OUTLIERS
                                  0
 COMPUTED SKEW
               -.3000 <sup>3</sup> ZERO OR MISSING
-.2000 <sup>3</sup> SYSTEMATIC EVENTS
                      SYSTEMATIC EVENTS

    REGIONAL SKEW

 ADOPTED SKEW
```

```
+ END OF RUN + NORMAL STOP IN FFA +
```

Exceedance Probability for Aliso Creek at Blum Ranch -- Gage F375 (Records 12 yrs, Computed Skew -.0596, Regional Skew -.30, Adopted Skew -.20)

6.2 SANTA CLARA RIVER AT LANG RAILROAD BRIDGE FFA

```
*********
                                                             **********
                    FFA
      FLOOD FREQUENCY ANALYSIS * U.S. ARMY CORPS OF ENGINEERS * PROGRAM DATE: FEB 1995 * THE HYDROLOGIC ENGINEERING CENTER * VERSION: 3.1 * 609 SECOND STREET * RUN DATE AND TIME: * DAVIS, CALIFORNIA 95616 * 10 JUL 08 10:13:16 * (916) 756-1104 *
 INPUT FILE NAME: LAF93STN.TXT
OUTPUT FILE NAME: LAF93STN.OUT
**TITLE RECORD(S)**
TT FLOOD FLOW FREQUENCY PROGRAM - SANTA CLARA RIVER AT LANG RR STATION
TT PEAK VALUES FROM LA COUNTY
TT STATION SKEW -.07
**STATION IDENTIFICATION**
ID F93 SANTA CLARA RIVER AT LANG RR STATION DA= 157SOMI REC BEGAN: 1949
**GENERALIZED SKEW**
     ISTN GGMSE SKEW F93 .000 -.07
**SYSTEMATIC EVENTS**
      30 EVENTS TO BE ANALYZED
**END OF INPUT DATA**
-PLOTTING POSITIONS- F93 SANTA CLARA RIVER AT LANG RR STATION D
EVENTS ANALYZED 3 ORDERED EVENTS °
FLOW 3 WATER FLOW WEIBULL °
DAY YEAR CFS 3 RANK YEAR CFS PLOT POS °
                         CFS <sup>3</sup> RANK YEAR
MON DAY YEAR

      0
      0
      1949
      6. 3
      1
      1968
      5900.
      3.23 °

      0
      0
      1950
      2. 3
      2
      1951
      4200.
      6.45 °

      0
      0
      1951
      4200.
      3
      3
      1965
      4040.
      9.68 °

      0
      0
      1952
      39. 3
      4
      2004
      2510.
      12.90 °

      0
      0
      1953
      29. 3
      5
      1957
      1260.
      16.13 °

      0
      0
      1954
      6. 3
      6
      1972
      953.
      19.35 °

      0
      0
      1955
      5. 3
      7
      1970
      620.
      22.58 °

      0
      0
      1956
      2
      3
      8
      1960
      500
      25.81 °

                       5. <sup>3</sup> 7 1970
2. <sup>3</sup> 8 1960
1260. <sup>3</sup> 9 1961
40. <sup>3</sup> 10 1966
                                                                    500. 25.81
     0 0 1956
     0 0 1957
0 0 1958
0 0 1959
0 0 1960
                                                                                 29.03
                                                                     500.
                                                                                 32.26
                                                                    265.
                            1. <sup>3</sup> 11 1973
500. <sup>3</sup> 12 1967
500. <sup>3</sup> 13 1969
60. <sup>3</sup> 14 2003
                                1. 3
                                                                      264.
                                                                                  35.48
                                                                      200.
                                                                                  38.71
         0 1961
                                                                                 41.94
                                                                    200.
     0
     0 0 1962
                                                                     87.
79.
                                                                                45.16
    0 0 1963
                              70. <sup>3</sup> 15 1971
                                                                                48.39 °
   0 0 1964 35. 3 16 1963
0 0 1965 4040. 3 17 1962
0 0 1966 265. 3 18 1974
                                                                      70.
                                                                                51.61 °
                                                                     60. 54.84 ° 59. 58.06 °
```

```
200. 3
  0 0 1967
                        1958
                                 40.
                                     61.29 °
    0 1968
            5900. ³
                     20
                                      64.52
  0
                         1952
                                 39.
              200. 3
    0 1969
  0
                      21
                         1976
                                 38.
                                      67.74
             620. ³
    0 1970
                                      70.97
                     2.2
                         1964
                                 35.
  Ω
              79. ³
    0 1971
                    23 1953
                                 29.
                                      74.19
  Ω
  0 0 1972
             953. ³
                    24 1975
                                 24.
                                      77.42 °
             264. <sup>3</sup> 25 1954
  0 0 1973
                                 6.
                                     80.65 °
              59. <sup>3</sup> 26 1949
  0 0 1974
                                     83.87 °
                                 6.
              24. <sup>3</sup> 27 1955
  0 0 1975
                                 5.
                                     87.10 °
              38. 3
  0 0 1976
                     28 1950
                                  2.
                                     90.32
             87. <sup>3</sup> 29 2510. <sup>3</sup> 30
                                     93.55
  0 0 2003
                         1956
                                  2.
  0
     0 2004
                         1959
                                      96.77
                                  1
-OUTLIER TESTS -
LOW OUTLIER TEST
BASED ON 30 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.563
    O LOW OUTLIER(S) IDENTIFIED BELOW TEST VALUE OF
HIGH OUTLIER TEST
BASED ON 30 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.563
    O HIGH OUTLIER(S) IDENTIFIED ABOVE TEST VALUE OF
                                      40823.
-SKEW WEIGHTING -
BASED ON 30 EVENTS, MEAN-SQUARE ERROR OF STATION SKEW = .172
DEFAULT OR INPUT MEAN-SQUARE ERROR OF GENERALIZED SKEW =
FINAL RESULTS
-FREQUENCY CURVE- F93 SANTA CLARA RIVER AT LANG RR STATION D
```

COMPUTED EXPECTED ³ PERCENT ³ CONFIDENCE LIMITS ° 3 CURVE PROBABILITY 3 CHANCE .05 3 EXCEEDANCE 3 FLOW IN CFS FLOW IN CFS 64600. 122000. ³ .2 ³ 461000. 17100. ° .5 54800. ³ 33700. 204000. 9870. • 28700. ³ 1.0 19600. 104000. 6210. ° 3 14400. ³ 3720. ° 10800. 2.0 49600. 3 5230. ³ 5.0 1690. ° 4350. 16200. 3 3 0 1920. 2160. 10.0 6020. 822. ° 3 3 0 330. ° 704. 748. 20.0 1830. 99. 3 3 48. 99. 205. 50.0 13. 12. 3 3 28. 5. 80.0 3 3 11. 4. 4. 90.0 1. 3 3 0 2. 1. 95.0 5. 0. 3 3 0. 99.0 1. 0. SYSTEMATIC STATISTICS

```
° LOG TRANSFORM: FLOW, CFS
                              NUMBER OF EVENTS
MEAN
                  1.9788 <sup>3</sup> HISTORIC EVENTS
 STANDARD DEV
                  1.0269
                          HIGH OUTLIERS
 COMPUTED SKEW
                  -.0704 3
                                          0
                          LOW OUTLIERS
 REGIONAL SKEW
                  -.0700 <sup>3</sup>
                          ZERO OR MISSING
 ADOPTED SKEW
                  -.1000 <sup>3</sup>
                           SYSTEMATIC EVENTS
+++++++++++++++++
+ END OF RUN
+ NORMAL STOP IN FFA
++++++++++++++++++++
```

Exceedance Probability for Santa Clara at Lang Railroad Bridge -- Gage F93 (Records 30 yrs, Computed Skew -.0704, Regional Skew -.07, Adopted Skew -.10)

Observed Events (Hazen plotting positions)

6.3 SANTA CLARA RIVER AT INTERSTATE 5 FFA

```
*********
                                    ***********
           FFA
    FIA

FLOOD FREQUENCY ANALYSIS * U.S. ARMY CORPS OF ENGINEERS *

PROGRAM DATE: FEB 1995 * THE HYDROLOGIC ENGINEERING CENTER *

VERSION: 3.1 * 609 SECOND STREET *

RUN DATE AND TIME: * DAVIS, CALIFORNIA 95616 *

10 JUL 08 10:33:48 * (916) 756-1104 *

*
   FLOOD FREQUENCY ANALYSIS
INPUT FILE NAME: I5NOUTST.TXT
OUTPUT FILE NAME: I5NOUTST.OUT
**TITLE RECORD(S)**
TT FLOOD FLOW FREQUENCY PROGRAM - SANTA CLARA RIVER AT I-5
   STATION SKEW .2966 5 LOWEST FLOWS REMOVED
**STATION IDENTIFICATION**
    F92 SANTA CLARA RIVER AT I-5 DA= 410SQMI REC BEGAN:1931
**GENERALIZED SKEW**
   ISTN GGMSE
                  SKEW
    F92 .000
**SYSTEMATIC EVENTS**
    59 EVENTS TO BE ANALYZED
**END OF INPUT DATA**
-PLOTTING POSITIONS- F92 SANTA CLARA RIVER AT I-5 DA= 410SOMI
EVENTS ANALYZED <sup>3</sup> ORDERED EVENTS ° FLOW <sup>3</sup> WATER FLOW WEIBULL °
                 CFS <sup>3</sup> RANK YEAR
• MON DAY YEAR
                                                   PLOT POS º
                                            CFS
0 0 1931 2310. <sup>3</sup> 1 1969 31800. 1.67 °
                  2090. <sup>3</sup>
                              2 1938
  0 0 1932
                                           24000.
                                                     3.33 °
                   618. ³
                             3 1944
   0 0 1933
                                           22200.
                                                     5.00 °

      4
      2005
      20900.
      6.67 °

      5
      1998
      19000.
      8.33 °

      6
      1943
      15000.
      10.00 °

      7
      1983
      14925.
      11.67 °

                 3870. ³
      0 1934
                  608. <sup>3</sup>
                              5 1998
   0 0 1935
                   833. 3
   0 0 1936
                              6 1943
                  3410. ³
0
  0 0 1937
               24000. <sup>3</sup>
                                           11600. 13.33 °
0
  0 0 1938
                              8 1966
                 4620. ³
                                           8770.
8150.
                              9 2000
                                                    15.00
° 0 0 1939
                  676. <sup>3</sup> 10 1971
0 0 1940
                                                    16.67
 0 0 1941 5050. 3 11 1952
0 0 1942 443. 3 12 2003
0 0 1943 15000. 3 13 2004
0 0 1941
                                            7600.
                                                     18.33
                                           7290.
0
                                                    20.00
                                            5900. 21.67 °
```

0	0	0	1944	22200.	3	14	1941	5050.	23.33	0
0	0	0	1945	317.	3	15	1973	4760.	25.00	0
0	0	0	1946	500.	3	16	1939	4620.	26.67	0
0	0	0	1947	1620.	3	17	1962	4250.	28.33	0
0	0	0	1948	350.	3	18	1934	3870.	30.00	0
0	0	0	1952	7600.	3	19	1958	3850.	31.67	0
0	0	0	1954	626.	3	20	1937	3410.	33.33	0
0	0	0	1955	746.	3	21	1979	3370.	35.00	0
0	0	0	1956	344.	3	22	1967	3000.	36.67	0
0	0	0	1957	1920.	3	23	1968	2810.	38.33	0
0	0	0	1958	3850.	3	24	1991	2750.	40.00	0
0	0	0	1959	1410.	3	25	1977	2510.	41.67	0
0	0	0	1960	151.	3	26	1974	2440.	43.33	0
0	0	0	1961	830.	3	27	1931	2310.	45.00	0
0	0	0	1962	4250.	3	28	1972	2200.	46.67	0
0	0	0	1963	1470.	3	29	1932	2090.	48.33	0
0	0	0	1964	860.	3	30	1997	2000.	50.00	0
0	0	0	1965	1260.	3	31	1957	1920.	51.67	0
0	0	0	1966	11600.	3	32	1985	1820.	53.33	0
0	0	0	1967	3000.	3	33	1947	1620.	55.00	0
0	0	0	1968	2810.	3	34	1999	1610.	56.67	0
0	0	0	1969	31800.	3	35	1963	1470.	58.33	0
0	0	0	1970	900.	3	36	1988	1450.	60.00	0
0	0	0	1971	8150.	3	37	1959	1410.	61.67	0
0	0	0	1972	2200.	3	38	1965	1260.	63.33	0
0	0	0	1973	4760.	3	39	1975	1120.	65.00	0
0	0	0	1974	2440.	3	40	1986	1050.	66.67	0
0	0	0	1975	1120.	3	41	1976	999.	68.33	0
0	0	0	1976	999.	3	42	1970	900.	70.00	0
0	0	0	1977	2510.	3	43	1989	876.	71.67	0
0	0	0	1979	3370.	3	44	1964	860.	73.33	0
0	0	0	1983	14925.	3	45	1936	833.	75.00	0
o	0	0	1985	1820.	3	46	1961	830.	76.67	0
o	0	0	1986	1050.	3	47	1955	746.	78.33	0
o	0	0	1987	444.	3	48	1940	676.	80.00	0
o	0	0	1988	1450.	3	49	1954	626.	81.67	0
0	0	0	1989	876.	3	50	1933	618.	83.33	0
0	0	0	1990	523.	3	51	1935	608.	85.00	0
0	0	0	1991	2750.	3	52	1990	523.	86.67	0
0	0	0	1997	2000.	3	53	1946	500.	88.33	0
o	0	0	1998	19000.	3	54	1987	444.	90.00	0
o	0	0	1999	1610.	3	55	1942	443.	91.67	0
o	0	0	2000	8770.	3	56	1948	350.	93.33	0
0	0	0	2003	7290.	3	57	1956	344.	95.00	0
0	0	0	2003	7290. 5900.	3	58	1945	317.	96.67	0
0	0	0	2004	20900.	3	56 59	1945	151.	98.33	0
								iiiiiiiiiiiii		
ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ					TTT					⊥ /4

BASED ON 59 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.831

HIGH OUTLIER TEST

BASED ON 59 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.831

O HIGH OUTLIER(S) IDENTIFIED ABOVE TEST VALUE OF 74860.

-SKEW WEIGHTING -

BASED ON 59 EVENTS, MEAN-SQUARE ERROR OF STATION SKEW = .107 DEFAULT OR INPUT MEAN-SQUARE ERROR OF GENERALIZED SKEW =

FINAL RESULTS

-FREQUENCY CURVE- F92 SANTA CLARA RIVER AT I-5 DA= 410SQMI COMPUTED EXPECTED 3 PERCENT ³ CONFIDENCE LIMITS ^o CHANCE 3 .05 .95

FLOW IN CFS 3 EXCEEDANCE 3 FLOW IN CFS CURVE PROBABILITY 3 0 125000. 159000. ³ .2 ³ 276000. 69300. ° ³ 157000. 0 77300. 92200. ³ .5 45200. 59800. ³ 1.0 52300. 99400. 32000. 38100. ³ 34500. 2.0 61300. 22100. 19900. ³ 5.0 18800. 30500. 12800. 11600. ³ 10.0 0 11200. 16800. 7990. 6190. ³ 20.0 6080. 8540. 4540. 2040. 3 50.0 2670. 1550. 2040. 3 3 746. 735. 80.0 999. 529. 3 305. 444. 90.0 3 456. 633. 297. 310. 3 95.0 3 444. 197. 3 3 144. 99.0 156. 240. 89 SYSTEMATIC STATISTICS ° LOG TRANSFORM: FLOW, CFS 3 NUMBER OF EVENTS ° 3.3360 ³ HISTORIC EVENTS 0 ° MEAN • STANDARD DEV .5434 ³ HIGH OUTLIERS 0 .2966 ³ LOW OUTLIERS ° COMPUTED SKEW 0 ° REGIONAL SKEW .2966 ³ ZERO OR MISSING .3000 3 SYSTEMATIC EVENTS • ADOPTED SKEW

++++++++++++++++++++ + END OF RUN

+ NORMAL STOP IN FFA

++++++++++++++++++++

Exceedance Probability for Santa Clara at Interstate-5 -- Gage F92 (Records 59 yrs, Computed Skew .2966, Regional Skew .30, Adopted Skew .30)

Observed Events (Weibull plotting positions)